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Optimization of Computer Models
We want to

min
x

f(x)

s.t. c(x) ≤ 0

x ∈ X

• X ⊂ Rd is a known and bounded region

• f : X → R denotes a scalar-valued objective function

• c : X → Rm denotes a vector of constraint functions

• f and c are the outputs from running the computer model

• x is the input to the computer model
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Motivation

Problems

• Need to be able to model f(x) and c(x) cheaply

• Want to be able to model correlation between f(x) and
c(x)

• Need an efficient optimization algorithm that can handle
the case of black-box derivative free optimization

Solutions

• We build a multivariate Gaussian process model for f(x)
and c(x)

• Sequential Monte Carlo will be used to speed up
computations

• We combine filter methods with statistical surrogate
modeling to leverage optimal properties of both

Introduction 13



SURROGATE MODEL



Gaussian Process

Definition
For any index set X , the real-valued stochastic process
{Y (x),x ∈ X}, is a Gaussian process if all the
finite-dimensional distributions, say, F (x1, ...,xn), are
multivariate normal distributions, for any choice of n ≥ 1 and
x1, ...,xn ∈ X .

• A Gaussian process thus requires a specification of a
mean function, m(x), and a covariance function C(x,x′)

• Gaussian processes are distributions over functions, i.e.,

Y (x) ∼ GP (m(x), C(x,x′))

Gaussian Process 15



Why use a Gaussian Process?

• The canonical choice for modeling computer experiments

• GP’s are much cheaper/faster to evaluate than actual
computer model code

• GP’s allow for uncertainty quantification of outputs at
untried (or unobserved) time points, i.e.,

Y (x∗)|Y (x) ∼ GP (m̃, C̃)

where

m̃ = m(x∗) + C(x,x∗)TC(x,x)−1(Y (x)−m(x))

C̃ = C(x∗,x∗)− C(x,x∗)TC(x,x)−1C(x,x∗)

Gaussian Process 16



Gaussian Process Prediction
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Multivariate Gaussian Process

• Capable of modeling correlated outputs

• Fast sequential Monte Carlo inference

Gaussian Process 18



STATISTICAL FILTER



Solvers

Mathematical programming has efficient algorithms for
non-linear (black-box) optimization (under constraints) with

• provable local convergence properties

• lots of polished open source software

Statistical approaches, e.g., expected improvement (Jones et
al., 1998)

• enjoy global convergence properties

• excel when simulation is expensive, noisy, non-convex

... but offer limited support for constraints
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Filter Methods

Introduced by Fletcher and Leyffer (2002) to solve nonlinear
programming problems without the use of a penalty function

A filter is like a Pareto front

Let h(x) = ||max{0, c(x)}||1 =
∑

max{0, ci(x)}. Then the
filter F is defined as the set of all points x ∈ X such that
there does not exist a point x′ ∈ X satisfying all of:

1. f(x′) ≤ f(x)

2. h(x′) ≤ h(x)

3. (h(x′), f(x′)) 6= (h(x), f(x))

Statistical Filter 21



Reformulated Optimization Problem
We want to

min
x

f(x)

s.t. h(x) = 0

x ∈ X

• X ⊂ Rd is a known and bounded region

• f : X → R denotes a scalar-valued objective function

• h : X → R denotes a scalar-valued feasibility fuction

• We have replaced the constraint function c(x) now with
the feasibility function h(x)

Statistical Filter 22



The Filter – Visually
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The Filter Algorithm

1. Initialize the filter F

2. While not terminated do

a Obtain a candidate point x∗

b Evaluate f(x∗) and c(x∗)

c If (h(x∗), f(x∗)) is acceptable to F , then

i Add (h(x∗), f(x∗)) to F

ii Remove any points in F dominated by (h(x∗), f(x∗))

d Check for termination

Statistical Filter 38



Extra Conditions

This approach is provably convergent to a local mode.
However, care must be taken to avoid convergence to an
infeasible point (h(x) > 0) or a local minimum.

Two enhancements to improve convergence to a global
minimum:

• Use an envelope

h(x∗) ≤ βh(xi) or f(x∗) ≤ f(xi)− γh(x∗)
∀(h(xi), f(xi)) ∈ F

for β, γ ∈ (0, 1)

• Upper bound U on the acceptable constraint violation

Statistical Filter 39
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Spaces of Interest
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The Statistical Filter

Combine filter method with Gaussian process surrogate
modeling

Surrogate models operate in the constraint space

Choose the next candidate point as the one that maximizes
the probability it will be acceptable to the filter, i.e.,

x∗ = max
x∈X

Pr{(h(x), f(x)) is acceptable to the filter F}

Statistical Filter 42



Probability Acceptable to the Filter
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The Statistical Filter Algorithm
1. Sample initial inputs from a LHD

2. Initialize the filter F
3. While not terminated do

a Fit a surrogate model for f(x) and c(x)

b Map the surrogate model in the constraint space to the
filter space

c Obtain a candidate point x∗ that maximizes the
probability acceptable to the filter

d Evaluate f(x∗) and c(x∗)

e If (h(x∗), f(x∗)) is acceptable to F , then

i Add (h(x∗), f(x∗)) to F
ii Remove any points in F dominated by (h(x∗), f(x∗))

f Check for termination

g Sample new candidate inputs from a LHD
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Illustrating Example
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Statistical Filter Solution
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Statistical Filter Solution
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Statistical Filter Solution
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Statistical Filter Solution
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Statistical Filter Solution
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True Filter

• f(x∗) = −0.86718 •f(x) = −0.86718
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RESULTS



The Toy Problem

Toy problem from Gramacy et al. 2016

• A linear objective in two variables

min
x
{x1 + x2 : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 1]2}

• where two non-linear constraints are given by

c1(x) =
3

2
− x1 − 2x2 −

1

2
sin(2π(x21 − 2x2))

c2(x) = x21 + x22 −
3

2

Even when treating f(x) = x1 + x2 as known, this is a hard
problem when c(x) is treated as a black-box
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The Toy Problem

xA ≈ [0.1954, 0.4044],

f (xA) ≈ 0.5998,

xB ≈ [0.7197, 0.1411],

f (xB) ≈ 0.8609,

xC = [0, 0.75],

f (xC) = 0.75,

• c2(x) may seem uninteresting, but it reminds us that
solutions may not exist on every boundary
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Results on Toy Problem
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Pump-and-Treat Hydrology Problem
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Pump-and-Treat Hydrology Problem
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CONCLUSIONS



Conclusions

• Filter approach provides provable convergence

• Statistical surrogate modeling improves efficiency of the
filter approach

• Multivariate modeling can improve surrogate modeling

• Combined for efficient constrained black-box optimization
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THANK YOU!

Questions?
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