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Outline of Talk:

1. Basic ideas of DA

2. Address dimensional analysis for multivariate responses

3. Examples

4. A glimpse at optimal design techniques for this problem

5. How we got involved in dimensional analysis

6. Conclusions
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• We wish to characterize the effects of velocity (X1) and time 
(X2) on the response variable distance, D.

• Now, we’re ignorant, but an oracle knows that the true 
relationship is:

• How do we figure this out?

Statistics vs. Engineers:  A simple example
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• DOE!!!  We’re concerned about 
curvatures and interactions, so 
run a central composite response 
surface design!

• After running the experiment, fit 
the second-order model:

• Drop out non-significant terms,

Statistician’s approach
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Engineer’s approach

• The Engineer thinks more like Isaac 
Newton in that the mechanics of a 
physical systems are governed by 
physical laws

– A physical equation must be 
dimensionally homogenous
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[D]=Miles [h(V,T)]=Miles

D = h(V,T)
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Engineer’s approach

• Dimensions (Units) of the variables:

– [D]=Miles

– [V]=Miles/Hour

– [T]=Hour

• One dimensionally homogeneous 
possibility:
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Dimensionally

Homogenous D = cVT

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=qW3R8XL9wpbJ9M&tbnid=OAbX_LAjguHcOM:&ved=0CAUQjRw&url=http://jedismedicine.blogspot.com/2010/08/my-dad-says-so.html&ei=3Iy6Uf25McSuyQGs54GADA&bvm=bv.47883778,d.aWc&psig=AFQjCNHMTSSBBexgdf5t6gpbGw5nzOE5UA&ust=1371266609726587


© no duplication without permission 9

Engineer’s approach

• One Final Simplification:  We make the 
equation dimensionless by dividing 
both sides by VT.

• To estimate c, all we need to do is pick 
a velocity, V, pick a time, T, observe D 
and plug in (replicate as needed). 
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Dimensionless 

Representation
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Statistical vs. Engineering Approaches
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Statistician’s  Approach Engineer’s Approach

Factors to vary 
in experiment

Two (Time, Distance) Zero (one fixed constant)

Model 
parameters

6 parameters One fixed constant

Scalability Model valid inside experimental 
range of factors

Will “scale”  over any 
experimental range

Explanatory 
Power

Local, empirical model Reveals a “universal law” 
between D,V, & T for physical 
systems
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1. Dimension reduction ✔

– The number of factors is reduced by the number of 
measurement dimensions in the variables

– Our example:  Number of factors = 2.  Number of dimensions 
is 2 (length, time).  Resulting number of dimensions is zero!

2. Scalability ✔

– Empirical models are valid within the ranges of the factors

– Dimensionless models scale to any size

Dimensional Analysis (DA) Advantages
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Why is scalability important?
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Running experiments on a turbine of this size is 
impossible
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Running experiments on a model of this size is easy. 
If all variables are dimensionless, we can extrapolate!
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An even more compelling type of extrapolation…
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Mars Rover DA Process
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• Step-by-step approach that leads to dimensionless DA 
model

• At each step, one variable is used to eliminate a dimension 
(e.g., M, L, T) from the set of variables.

• The variable used is eliminated

• At termination, a reduced set of dimensionless variables is 
created

Ipsen (1960) Stepwise Derivation of DA Model

18



© no duplication without permission 19

Step 0:  Initialize the variables by specifying 
dimensions
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Step 1:  Use d to eliminate length (L)
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Step 2:  Use m (rover mass) to eliminate mass (M)
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Step 3:  Use gd-1 to eliminate time (T)

22



© no duplication without permission 23

• DA model:

• DA terminology: two 
dimensionless variables 
or “pi groups”

Result
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Summary
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• Model:

• Objective:  Estimate φ by varying the single factor π1:

• On Earth, cannot vary ρ = density of atmosphere. 

• Could vary m = mass of rover but no need.

• Just vary d in order to vary π1

So we have a one-factor DA experiment
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(Logged) Earth-bound results, n = 9
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• Just change the 
gravitational 
constant and the 
atmospheric 
density, and re-
compute the π
groups:

OK: But what about Mars?
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• The diameter 
that slows the 
rover to 90 m/s 
is 101 meters

Now solve for v, smooth, and back-solve for d90
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• Example shows:

– Not only can we extrapolate outside the range of the 
experimental region

– We can understand the effects of changing physical constants 
without actually changing them

– Run an experiment on Earth, extrapolate to Mars

Power of DA
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How do we know this process works?
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Buckingham Π Theorem (1914)

If there is a physically meaningful equation involving a certain 
number n of physical variables, then the original equation can 
be rewritten in terms of a set of p = n − k dimensionless 
parameters π1, π2, ..., πp constructed from the original 
variables, where k is the number of physical dimensions 
involved.

First proven by Joseph Bertrand (1878), in context of 
electrodynamics

How do we know this process works?
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• MV Buckingham Π Theorem

• New multivariate design criteria

• Illustrations:  one simple, textbook example, one very 
complicated example

• Recommendations for optimal design algorithms in 
complicated situations

• (Maybe) a better introduction to DA for statisticians

Contributions of new paper
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MV Buckingham Π Theorem
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Simple Example (White, Fluid Mechanics, 2008)

• Pump design.  Outputs are head pressure (gH) and brake 
horsepower (bhp)

• Predictors: Q, D, n, μ, ρ (ε not considered)
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• DA model (two response π’s; 2 factor π’s):

• Only Q, n, and D are varied, μ and ρ are held constant.

Simple Example (White, Fluid Mechanics, 2008)
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• Design space in the original variables, Q, n, and d:

• Design space in the two pi groups:

There are two design spaces
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Pictures of Design Spaces
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• Previous work we recommended use of:

– Nonparametric designs 

• Uniform designs

• Minimax distance designs (etc.,)

– Parametric designs

• D-optimal designs for 3rd-order (or higher-order) models

• Suggested I-optimal, L-optimal* designs as alternatives

Design Recommendations

_

*Cook, Nachtsheim “Model Robust Linear-Optimal Designs, Tech, 1983
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• The MV I-optimality criterion:

• The MV criterion is simply the model-robust, L-optimality 
criterion of Cook and Nachtsheim (1982, Technometrics), 
where the weights are given by the variances, wi

-1.

MV I-optimality
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I-Optimal Design (n = 16)
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Designing Efficient Heat Exchangers
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Why is this Multivariate?
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Heat 

Extracted

Power 

Required
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Schematic
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Fluid Properties
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Viscosity Density Thermal 

Conductivity

Temperature



© no duplication without permission 45

• Design of a heat exchanger with bivariate response

– Response 1 is the pressure loss (ΔP) 

– Response 2 is heat transfer rate (Q) 

• There are 9 independent variables (next slides)

• There are four fundamental dimensions: L, M, T, and t

• Thus there will be 9 - 4 = 5 independent pi groups

A more complex example
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Derivation of DA Model
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Derivation of DA Model
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Reynold’s number
Euler’s number
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• Parametric design

– Generate the designs using the 8-dimensional original 
variables space

– Use coordinate exchange with continuous optimizer for each 
coordinate

• Nonparametric design

– Generate 100K uniformly distributed points in the 5D Pi design 
space for use as candidate set

– Use candidate set with Fast Flexible Filling* to create designs

*Ryan Lekivetz, Brad Jones, QREI, 2014

Design Generation Findings
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Parametric Design: 2D Projections, n = 100
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Nonparametric Design: 2D Projections, n = 100
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Comments/Conclusions

• DA is a powerful tool for modeling physical systems

– Parsimony, Scalability, Dimension Reduction

• Multivariate responses not uncommon

• Gave generalization of Buckingham for multivariate 
responses

• Gave new criterion of multivariate parametric design

• Gave recommendations for design construction
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Epilogue (Chris):

How did we stumble into the 

“design for DA” problem?
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• (c. 1980)   Chris’s early consulting– giving bad advice

• 1988 talk on DOE at Carlson school to Mgt Sci department

• 2011, Tom Albrecht, Boston Scientific

• 2013, M. Albrecht, Nachtsheim, Cook, T. Albrecht, 
Experimental Design for Engineering Dimensional Analysis, 
Technometrics

• 2014, Dennis and Chris DOE PhD seminar: Dan Eck proves 
the MV Buckingham Pi Theorem

• 2021,  our paper

How did we statisticians get involved in DA?
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Thank you
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