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Statistics vs. Engineers: A simple example

 We wish to characterize the effects of velocity (X1) and time
(X2) on the response variable distance, D.

* Now, we’re ignorant, but an oracle knows that the true
relationship is:

D=V xT+¢

* How do we figure this out? | g | 11

/]‘
o,
3 ~ A%
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Statistician’s approach

o
* DOE!!! We’re concerned about -
curvatures and interactions, so
run a central composite response e o
surface design! -
. . . @ 1
e After running the experiment, fit ®

the second-order model: factor B
E(Y) = Bo + £1X1 + B2 Xs + B12 X1 Xo + 511X12 + 322X22

* Drop out non-significant terms,

A

Y =104XXo =V xT
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Statistician’s approach
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Engineer’s approach

* The Engineer thinks more like Isaac
Newton in that the mechanics of a

physical systems are governed by
physical laws

— A physical equation must be
dimensionally homogenous

hv.T)

[D]=Miles

[h(V,T)]=Miles
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Engineer’s approach
* Dimensions (Units) of the variables:
— [D]=Miles
— [V]=Miles/Hour

— [T]=Hour

* One dimensionally homogeneous
possibility:

Dimensionally
Homogenous

D=cVT
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Engineer’s approach

* One Final Simplification: We make the
equation dimensionless by dividing
both sides by VT.

Dimensionless = C
Representation VT

* To estimate ¢, all we need to do is pick
a velocity, V, pick a time, T, observe D
and plug in (replicate as needed).
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Statistical vs. Engineering Approaches

_ Statistician’s Approach Engineer’s Approach

Factorstovary = Two (Time, Distance) Zero (one fixed constant)
in experiment

Model 6 parameters One fixed constant
parameters
Scalability Model valid inside experimental  Will “scale” over any
range of factors experimental range
Explanatory Local, empirical model Reveals a “universal law”
Power between D,V, & T for physical
systems
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Dimensional Analysis (DA) Advantages

1. Dimension reduction v

— The number of factors is reduced by the number of
measurement dimensions in the variables

— Our example: Number of factors = 2. Number of dimensions
is 2 (length, time). Resulting number of dimensions is zero!

2. Scalability v

— Empirical models are valid within the ranges of the factors

— Dimensionless models scale to any size
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Why is scalability important?
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Running experiments on a turbine of this size is
impossible

¥
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Running experiments on a model of this size is easy.
If all variables are dimensionless, we can extrapolate!




An even more compelling type of extrapolation...
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CONCEPT VIGNETTES

A Collaboration between SUTD and MIT

oy
- >
e

y

e N
~ . B :
. - .
: .\J. b S
: Tl
. 4
- 5
-

~

X Jo" -
-

.

‘..v" -~

"y




Mars Rover DA Process

!U:f(dﬂmﬁg7p)

v = velocity (dependent variable)
d = diameter of parachute

m = mass of the rover
g = gravitational constant

p = density of the atmosphere
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lv|=L/T
d] =

m| =M

9] =L/T*
o] = M/L°
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Ipsen (1960) Stepwise Derivation of DA Model

* Step-by-step approach that leads to dimensionless DA
model

* At each step, one variable is used to eliminate a dimension
(e.g., M, L, T) from the set of variables.

e The variable used is eliminated

At termination, a reduced set of dimensionless variables is
created
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Step 0: Initialize the variables by specifying

© no duplication without permission

dimensions

Step 0: Initialize

Variable Dimension
v LT!

d L

m M

g LT—?

p ML
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Step 1: Use d to eliminate length (L)

Step 1 Result:
Remove L from
Step 0: Initialize Step 0 using d
Variable Dimension | Var. Dim.
v LT—! vd ! T-1
d L
m M m M
g LT—2 gd—! T2
P ML—3 pd? M

© no duplication without permission

20

20



Step 2: Use m (rover mass) to eliminate mass (M)

Step 1 Result:
Remove L from
Step 0 using d

Step 2 Result:
Remove M from
Step 1 using m

Var. Dim. Var. Dim.

vd ™1 T—1 vd~?! T—1
m M

gd—1 T2 gd—1 T2
pd? M od3m ! 1
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Step 3: Use gd to eliminate time (T)

Step 2 Result:
Remove M from
Step 1 using m

Step 3 Result:
Remove T from
Step 2 using gd 1

Var. Dim. Var. Dim.
vd 1 T—1 | v/+y/dg 1
gd=1! T2

pd3m 1 1 pd3m =1 1

© no duplication without permission
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Result

* DA model:

* DA terminology: two
dimensionless variables
or “pi groups”

© no duplication without permission
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Summary

Step 0: Initialize

Step 1 Result:
Remove L from
Step 0 using d

Step 2 Result:
Remove M from
Step 1 using m

Step 3 Result:
Remove T from
Step 2 using gd—!

Variable Dimension | Var. Dim. Var. Dim. Var. Dim.
vV LT! va-t 11 Vd! T-1 | V/\/dg 1
d L
m M m M
g LT—? gd™! T2 gd—! T2
0 ML3 pd? M pd3m 1 1 pd3m =1 1
v 5 od®
VvV dg m
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So we have a one-factor DA experiment

* Model: 7y = ¢(m7)

* Objective: Estimate ¢ by varying the single factor m;:
pd?

™
* On Earth, cannot vary p = density of atmosphere.

m1

* Could vary m = mass of rover but no need.

* Justvarydin order to vary m,
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(Logged) Earth-bound results, n =9

Earth observed m groups

15+ e ]

log(v/+/dg)
d

0.5 | Q

log(m)

0.5 ‘b i

_1.5l 1 1 1 1
3 4 5 6 T B8

2]
log(m) = log(pd®/m)

10 11 12
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OK: But what about Mars?

* Just change the
gravitational
constant and the
atmospheric
density, and re-
compute the n
groups:

© no duplication without permission

log(v/\/dg)

log(mo)

Mars 7 groups

251 G

1.5 -

0.5

-0.5 -

1
1

2
log(7y)

3 4

= log(pd®

5/-'rn, )
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Now solve for v, smooth, and back-solve for dg,

Mars: Solving for diameter dgg

150
—_ / 140
U ’ﬂ-o dg 130 |
120 |
110
100 N
. Q)
* The diameter °
80 |-
that slows the Rt
rover to 90 m/s ‘
is 101 meters ol N
30 P
20
10| -~
% 50 100 160 200 250 300 850 400 450
d
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Power of DA

* Example shows:

— Not only can we extrapolate outside the range of the
experimental region

— We can understand the effects of changing physical constants
without actually changing them

— Run an experiment on Earth, extrapolate to Mars

© no duplication without permission
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How do we know this process works?
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How do we know this process works?

Buckingham N Theorem (1914)

If there is a physically meaningful equation involving a certain
number n of physical variables, then the original equation can
be rewritten in terms of a set of p = n — k dimensionless
parameters m,, m,, ..., T, constructed from the original
variables, where k is the number of physical dimensions
involved.

First proven by Joseph Bertrand (1878), in context of
electrodynamics

© no duplication without permission
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Contributions of new paper

* MV Buckingham N Theorem
* New multivariate design criteria

* lllustrations: one simple, textbook example, one very
complicated example

* Recommendations for optimal design algorithms in
complicated situations

* (Maybe) a better introduction to DA for statisticians

© no duplication without permission
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MV Buckingham N Theorem

Theorem 1. Assume the following:

(i) A vector Y € R" has a functional relationship with p predictors (z1,...,xp):

Y = f(z1,...,2p)
where f is an unknown function of the predictors.

(it) The quantities (Y1,...,Y,,x1,...,x,) involve k fundamental dimensions labeled by L1, ..., Ly. Then
it 1s assumed that A C span(B) where A and B are, respectively, dimensional matrices for the
responses and predictors

(iti) Let Z represent any of (Y1,...,Yr,x1,...,2p). Then, [Z] = HLI L% for somea; €R,i=1,...,k
which are the dimension exponents of Z.

Then the formula Y = f(z1,...,zp) can be rewritten as
T = h(m,... ﬂp—mnk(B)):

where ™ € R" is a vector of dimensionless quantities and m;, ... T,_rank(B) are dimensionless predictors.
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Simple Example (White, Fluid Mechanics, 2008)

 Pump design. Outputs are head pressure (gH) and brake
horsepower (bhp)
* Predictors: Q, D, n, 1, p (¢ not considered)

Variable || Dimensions
gH [L?T—2]
bhp [ML?*T 3]
Q (LT~
D [L]

n [7%4

p [ML™]

L [ML—2T—Y
€ [L]

S

2 2 3 1L 0 =3 =1 1
-2 -3 ], B -1 0 -1 0 -1 0
0 1 0O 0 0 1 1 O

A C span(B)

34



Simple Example (White, Fluid Mechanics, 2008)

DA model (two response n’s; 2 factor it’s):

[ Q pnD?
_ g TLDBj H’
\ Pﬁg& /

* Only Q, n, and D are varied, i and p are held constant.

[ g
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There are two design spaces

* Design space in the original variables, Q, n, and d:

x={(Q,n,D):4<Q <30, 710 <n <1170, 28 < D < 42}.

* Design space in the two pi groups:

Yr = { (71, ™) : m = Q/(nD?), 7y = nD? where (Q,n, D) € x}

© no duplication without permission 36
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Pictures of Design Spaces

X Xr

(b) Discretized design space on [-1,1]2
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Desigh Recommendations

* Previous work we recommended use of:

— Nonparametric designs
* Uniform designs
* Minimax distance designs (etc.,)
— Parametric designs
* D-optimal designs for 3"9-order (or higher-order) models

* Suggested l-optimal, L-optimal* designs as alternatives

*Cook, Nachtsheim “Model Robust Linear-Optimal Designs, Tech, 1983

© no duplication without permission
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MV l-optimality

 The MV l-optimality criterion:

Vv (€n) =770y Z w; ' Trace[D;M;]
i=1

 The MV criterion is simply the model-robust, L-optimality
criterion of Cook and Nachtsheim (1982, Technometrics),
where the weights are given by the variances, w..

© no duplication without permission
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I-Optimal Design (n = 16)
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Designing Efficient Heat Exchangers
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Why is this Multivariate?
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Schematic

T, — Pipe wall
temperature

V — Fluid velocity

d — pipe diameter I |
L — pipe length
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Viscosity

© no duplication without permission

Fluid Properties

Density

Thermal
Conductivity

Temperature
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A more complex example

* Design of a heat exchanger with bivariate response
— Response 1 is the pressure loss (AP)
— Response 2 is heat transfer rate (Q)
* There are 9 independent variables (next slides)
* There are four fundamental dimensions: L, M, T, and t

* Thus there will be 9 - 4 =5 independent pi groups
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AP
Q

— f(DﬁLﬂVaTWan:MﬂpagaK)

Variable Symbol SI Units Base Quantity
Pressure change AP Pa M /Lt?
Heat transfer rate Q w ML2/t3

Inner diameter of pipe d M L
Length of pipe L M L
Mean velocity of fluid \ m/s L/t
Temperature of inner pipe wall Tw K T
Mean temperature of fluid at the | Tt K T

start of the tube

Viscosity of fluid il N-s/m? M/Lt
Density of fluid p kg/m3 M/L3
Acceleration due to gravity g m/s? L/t?
Thermal conductivity of fluid K W/m-K ML/Tt3

© no duplication without permission
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Derivation of DA Model

Step 0: Initialize

Step 1 Result:
Remove M from
Step 0 using p

Step 2 Result:
Remove L from
Step 1 using d

Step 3 Result:
Remove t from
Step 2 using V/d

Step 4 Result:
Remove T from
Step 3 using T’

Variable Dimension | Var. Dim. Var. Dim. Var. Dim. Var. Dim.
AP ML=t=2 | AP/p T AP/(pd?) % AP/(pV?) 1 AP/(pV?) 1
Q mL?~3 Q/p  t3L° | Q/(pd®) T3 | Q/(pd®V®) 1 | Q/(pd?’V?) 1
d L d L
L L L L L/d 1 L/d 1 L/d 1
Vv L1 Vv L V/d gl
Tw & Tw i Tw T Tw T Tw /Ty 1
T T T s T s T 7
7 ML7't™' | p/p LT p/ (pd?) t! p/(pdV) 1 p/(pdV) 1
p ML™3
g Lt g L2 g/d 2 gd/v? I gd/v? 1
K MLt=%43 | K/p LT3 | K/(pdY) T-Y43 | K/(pdV3) T~ | KT;/(pdV3) 1

AP

V2 — & £ ITw wpn gd KTy

pdégm d’ Ty’ pdV’ v?’ pDv3

© no duplication without permission
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Derivation of DA Model

J
Euler’s number Reynold’s number

(L Tw/n\ gd KTy
pdvg B d’ T v2’ pDv3
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Design Generation Findings

* Parametric design

— Generate the designs using the 8-dimensional original
variables space

— Use coordinate exchange with continuous optimizer for each
coordinate

* Nonparametric design

— Generate 100K uniformly distributed points in the 5D Pi design
space for use as candidate set

— Use candidate set with Fast Flexible Filling* to create designs

*Ryan Lekivetz, Brad Jones, QREI, 2014

© no duplication without permission
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onparametric Design: 2D Projections, n = 100
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Comments/Conclusions

* DA is a powerful tool for modeling physical systems
— Parsimony, Scalability, Dimension Reduction
* Multivariate responses not uncommon

* Gave generalization of Buckingham for multivariate
responses

* Gave new criterion of multivariate parametric design

 Gave recommendations for design construction
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Epilogue (Chris):

How did we stumble into the
“design for DA” problem?
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How did we statisticians get involved in DA?

* (c.1980) Chris’s early consulting— giving bad advice
1988 talk on DOE at Carlson school to Mgt Sci department
e 2011, Tom Albrecht, Boston Scientific

« 2013, M. Albrecht, Nachtsheim, Cook, T. Albrecht,
Experimental Design for Engineering Dimensional Analysis,
Technometrics

e 2014, Dennis and Chris DOE PhD seminar: Dan Eck proves
the MV Buckingham Pi Theorem

* 2021, our paper
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Thank you
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My HoBgy:
ABUSING DIMENSIONAL ANALYSIS

PRIVS COMBINED
PLANCK ENERGY _ EFAGASMILEAGE (!'T

PRESSURE AT THE 2 MINIMUM WIDTH OF
EARTH'S CORE THE ENGUSH CHANNEL

TS CORRELT TOWITHIN EXPERIMENTAL ERROR, ANDTHE
UNMs CHECK OUT. T MUST BEA FUNDAMENTAL. LAW.

BUT WHAT IF THEY
BUILD ARETTER PRIVS?

_
oo =9 2.9
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