Multivariate Design of Experiments for Engineering Dimensional Analysis

Chris Nachtsheim
Carlson School of Management and
School of Statistics
University of Minnesota

Daniel J Eck
Department of Statistics
University of Illinois

Thomas A Albrecht Atlassian

FTC Webinar Series, November 3, 2021

Joint Work With:

Dennis Cook: University of Minnesota

Outline of Talk:

- 1. Basic ideas of DA
- 2. Address dimensional analysis for multivariate responses
- 3. Examples
- 4. A glimpse at optimal design techniques for this problem
- 5. How we got involved in dimensional analysis
- 6. Conclusions

Statistics vs. Engineers: A simple example

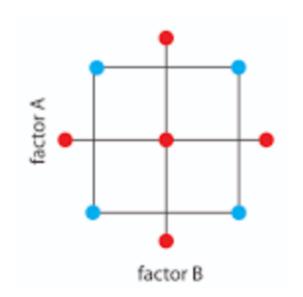
- We wish to characterize the effects of velocity (X1) and time
 (X2) on the response variable distance, D.
- Now, we're ignorant, but an oracle knows that the true relationship is:

$$D = V \times T + \varepsilon$$

How do we figure this out?

Statistician's approach

- DOE!!! We're concerned about curvatures and interactions, so run a central composite response surface design!
- After running the experiment, fit the second-order model:



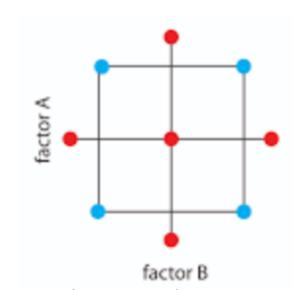
$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2$$

Drop out non-significant terms,

$$\hat{Y} = 1.04 X_1 X_2 \approx V \times T$$

Statistician's approach

- DOE! We're concerned about curvatures and interactions, so run a central composite response surface design!
- After running the experiment, fit the second-order model:



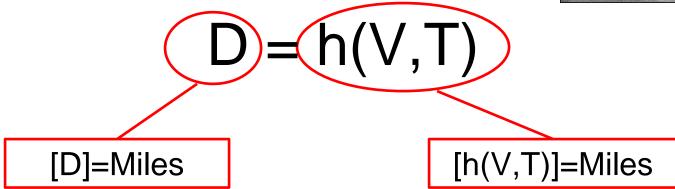
$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{12} X_1 X_2 + \beta_{11} X_1^2 + \beta_{22} X_2^2$$

Drop out non-significant terms,

$$\hat{Y} = 1.04 X_1 X_2 \approx V \times T$$

Engineer's approach

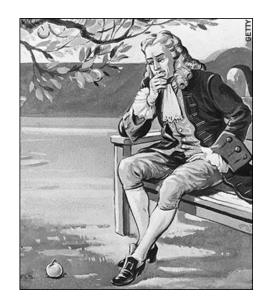
- The Engineer thinks more like Isaac Newton in that the mechanics of a physical systems are governed by physical laws
 - A physical equation must be dimensionally homogenous



© no duplication without permission

Engineer's approach

- Dimensions (Units) of the variables:
 - [D]=Miles
 - [V]=Miles/Hour
 - [T]=Hour
- One dimensionally homogeneous possibility:



Dimensionally Homogenous
$$D = cVT$$

Engineer's approach

 One Final Simplification: We make the equation dimensionless by dividing both sides by VT.

 $\frac{D}{VT} = c$ Representation

 To estimate c, all we need to do is pick a velocity, V, pick a time, T, observe D and plug in (replicate as needed).

Statistical vs. Engineering Approaches

	Statistician's Approach	Engineer's Approach		
Factors to vary in experiment	Two (Time, Distance)	Zero (one fixed constant)		
Model parameters	6 parameters	One fixed constant		
Scalability	Model valid inside experimental range of factors	Will "scale" over any experimental range		
Explanatory Power	Local, empirical model	Reveals a "universal law" between D,V, & T for physical systems		

Dimensional Analysis (DA) Advantages

1. Dimension reduction ✓

- The number of factors is reduced by the number of measurement dimensions in the variables
- Our example: Number of factors = 2. Number of dimensions is 2 (length, time). Resulting number of dimensions is zero!

2. Scalability 🗸

- Empirical models are valid within the ranges of the factors
- Dimensionless models scale to any size

Why is scalability important?

Running experiments on a turbine of this size is impossible

Running experiments on a model of this size is easy. If all variables are dimensionless, we can extrapolate!

An even more compelling type of extrapolation...

CONCEPT VIGNETTES

A Collaboration between SUTD and MIT

Mars Rover DA Process

$$v = f(d, m, g, \rho)$$

$$v = \text{velocity (dependent variable)}$$

$$d = \text{diameter of parachute}$$

$$m = \text{mass of the rover}$$

$$g = \text{gravitational constant}$$

$$\rho = \text{density of the atmosphere}$$

$$[v] = L/T$$

$$[d] = L$$

$$[m] = M$$

$$[g] = L/T^2$$

$$[\rho] = M/L^3$$

Ipsen (1960) Stepwise Derivation of DA Model

- Step-by-step approach that leads to dimensionless DA model
- At each step, one variable is used to eliminate a dimension (e.g., M, L, T) from the set of variables.
- The variable used is eliminated
- At termination, a reduced set of dimensionless variables is created

Step 0: Initialize the variables by specifying dimensions

Step 0:	Initialize
Variable	Dimension
\overline{v}	LT^{-1}
d	L
$\mid m \mid$	M
$\mid g \mid$	LT^{-2}
ho	ML^{-3}

Step 1: Use d to eliminate length (L)

		Step 1	Result:	
		Remov	e L from \mid	
Step 0:	Initialize	Step 0 using d		
Variable	Dimension	Var.	Dim.	
v	LT^{-1}	vd^{-1}	T^{-1}	
$\mid d \mid$	L			
$\mid m \mid$	M	$\mid m \mid$	M	
$\mid g \mid$	LT^{-2}	$egin{array}{c} gd^{-1} \ ho d^3 \end{array}$	T^{-2}	
ρ	ML^{-3}	$ ho d^3$	M	

Step 2: Use m (rover mass) to eliminate mass (M)

Step 1 Result:		Step 2 Result:		
Remove L from		Remove M from		
Step 0 using d		Step 1 using m		
Var.	Dim.	Var.	Dim.	
vd^{-1}	T^{-1}	vd^{-1}	T^{-1}	
$\mid m \mid$	M			
$\mid gd^{-1}$	T^{-2}	$gd^{-1} \\ od^3m^{-1}$	T^{-2}	
$ ho d^3$	M	$ ho d^3 m^{-1}$	1	

Step 3: Use gd⁻¹ to eliminate time (T)

Step 2 F	Result:	Step 3 Result:		
Remove M from		Remove T from		
Step 1 using m		Step 2 using gd^{-1}		
Var.	Dim.	Var.	Dim.	
vd^{-1}	T^{-1}	v/\sqrt{dg}	1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	T^{-2}			
ρd^3m^{-1}	1	$ ho d^3 m^{-1}$	1	

Result

DA model:

 DA terminology: two dimensionless variables or "pi groups"

$$rac{v}{\sqrt{dg}} = \phi\left(rac{
ho d^3}{m}
ight) \ \pi_0 = \phi(\pi_1)$$

Summary

		Step 1 Result:		Step 2 Result:		Step 3 Result:	
		Remove L from		Remove M from		Remove T from	
Step 0: Initialize		Step 0	using d	Step 1 using m		Step 2 using gd^{-1}	
Variable	Dimension	Var.	Dim.	Var.	Dim.	Var.	Dim.
V	LT^{-1}	Vd^{-1}	T^{-1}	Vd^{-1}	T^{-1}	V/\sqrt{dg}	1
$\mid d$	L						
$\mid m \mid$	M	m	M				
$\mid g \mid$	LT^{-2}	gd^{-1}	T^{-2}	$\left egin{array}{c} gd^{-1} \ ho d^3m^{-1} \end{array} ight $	T^{-2}		
ρ	ML^{-3}	$ ho d^3$	M	$ ho d^3 m^{-1}$	1	$ ho d^3 m^{-1}$	1

$$\frac{v}{\sqrt{dg}} = \phi \left(\frac{\rho d^3}{m}\right)$$

So we have a one-factor DA experiment

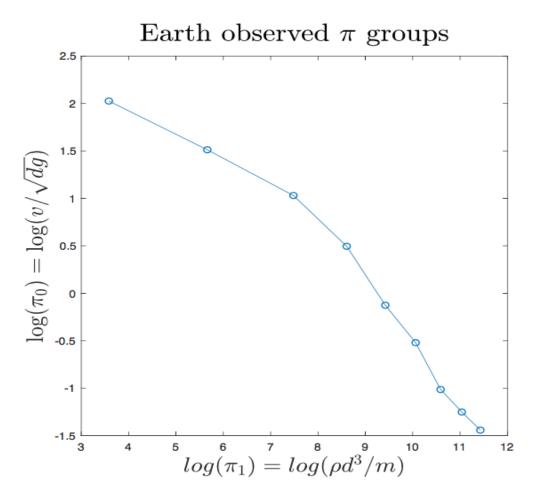
• Model:
$$\pi_0 = \phi(\pi_1)$$

• Objective: Estimate ϕ by varying the single factor π_1 :

$$\pi_1 = \frac{\rho d^3}{m}$$

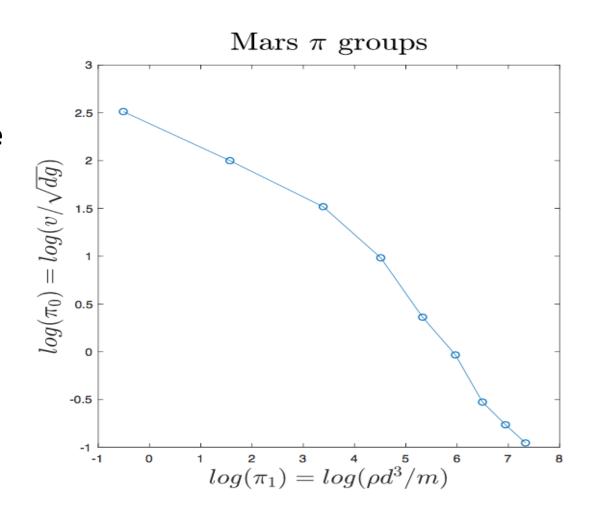
- On Earth, cannot vary ρ = density of atmosphere.
- Could vary m = mass of rover but no need.
- Just vary d in order to vary π₁

(Logged) Earth-bound results, n = 9



OK: But what about Mars?

 Just change the gravitational constant and the atmospheric density, and recompute the π groups:

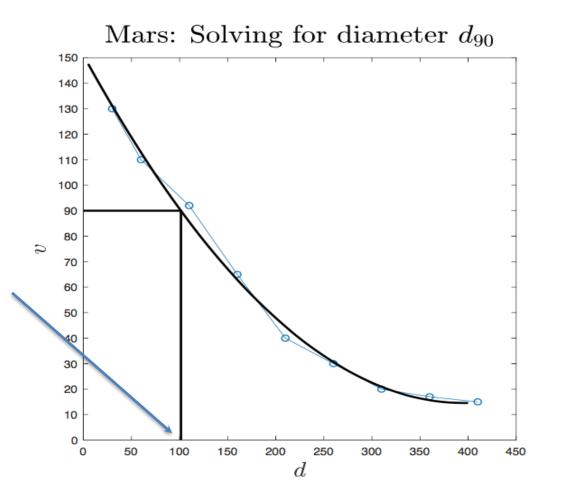


© no duplication without permission

Now solve for v, smooth, and back-solve for d₉₀

$$v = \pi_0 \sqrt{dg}$$

 The diameter that slows the rover to 90 m/s is 101 meters



© no duplication without permission

Power of DA

Example shows:

- Not only can we extrapolate outside the range of the experimental region
- We can understand the effects of changing physical constants without actually changing them
- Run an experiment on Earth, extrapolate to Mars

How do we know this process works?

How do we know this process works?

Buckingham Π Theorem (1914)

If there is a physically meaningful equation involving a certain number n of physical variables, then the original equation can be rewritten in terms of a set of p = n - k dimensionless parameters π_1 , π_2 , ..., π_p constructed from the original variables, where k is the number of physical dimensions involved.

First proven by Joseph Bertrand (1878), in context of electrodynamics

© no duplication without permission

Contributions of new paper

- MV Buckingham Π Theorem
- New multivariate design criteria
- Illustrations: one simple, textbook example, one very complicated example
- Recommendations for optimal design algorithms in complicated situations
- (Maybe) a better introduction to DA for statisticians

MV Buckingham Π Theorem

Theorem 1. Assume the following:

(i) A vector $Y \in \mathbb{R}^r$ has a functional relationship with p predictors (x_1, \ldots, x_p) :

$$Y = f(x_1, \ldots, x_p)$$

where f is an unknown function of the predictors.

- (ii) The quantities $(Y_1, \ldots, Y_r, x_1, \ldots, x_p)$ involve k fundamental dimensions labeled by L_1, \ldots, L_k . Then it is assumed that $\mathbf{A} \subseteq span(\mathbf{B})$ where \mathbf{A} and \mathbf{B} are, respectively, dimensional matrices for the responses and predictors
- (iii) Let Z represent any of $(Y_1, \ldots, Y_r, x_1, \ldots, x_p)$. Then, $[Z] = \prod_{i=1}^k L^{\alpha_i}$ for some $\alpha_i \in \mathbb{R}$, $i = 1, \ldots, k$ which are the dimension exponents of Z.

Then the formula $Y = f(x_1, ..., x_p)$ can be rewritten as

$$\tilde{\pi} = h(\pi_i, \dots \pi_{p-rank(B)}),$$

where $\tilde{\pi} \in \mathbb{R}^r$ is a vector of dimensionless quantities and $\pi_i, \dots \pi_{p-rank(B)}$ are dimensionless predictors.

Simple Example (White, Fluid Mechanics, 2008)

- Pump design. Outputs are head pressure (gH) and brake horsepower (bhp)
- Predictors: Q, D, n, μ, ρ (ε not considered)

Variable	Dimensions
gH	$[L^2T^{-2}]$
bhp	$[ML^2T^{-3}]$
Q	$[L^3T^{-1}]$
D	[L]
n	$[T^{-1}]$
ρ	$[ML^{-3}]$
μ	$[ML^{-1}T^{-1}]$
ϵ	[L]

$$\mathbf{A} = \begin{pmatrix} 2 & 2 \\ -2 & -3 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & 1 & 0 & -3 & -1 & 1 \\ -1 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$
$$\mathbf{A} \subseteq \operatorname{span}(\mathbf{B})$$

Simple Example (White, Fluid Mechanics, 2008)

• DA model (two response π 's; 2 factor π 's):

$$\begin{pmatrix} \frac{gH}{n^2D^2} \\ \frac{bhp}{\rho n^3D^5} \end{pmatrix} = g\left(\frac{Q}{nD^3}, \frac{\rho nD^2}{\mu}\right)$$

Only Q, n, and D are varied, μ and ρ are held constant.

There are two design spaces

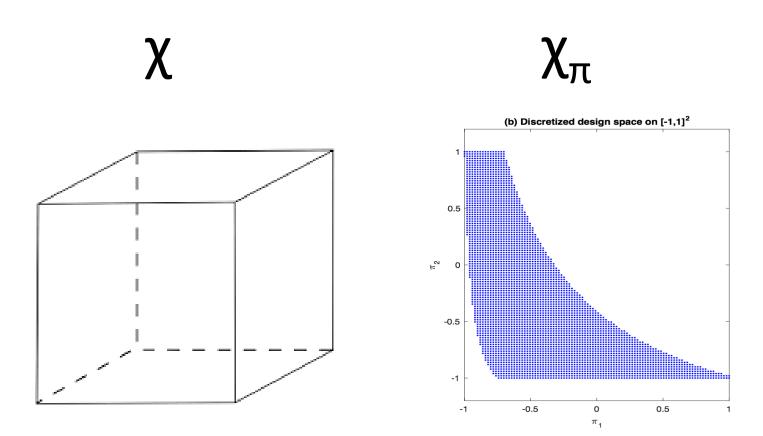
Design space in the original variables, Q, n, and d:

$$\chi = \{ (Q, n, D) : 4 \le Q \le 30, 710 \le n \le 1170, 28 \le D \le 42 \}.$$

Design space in the two pi groups:

$$\chi_{\pi} = \{ (\pi_1, \pi_2) : \pi_1 = Q/(nD^3), \pi_2 = nD^2 \text{ where } (Q, n, D) \in \chi \}$$

Pictures of Design Spaces



Design Recommendations

- Previous work we recommended use of:
 - Nonparametric designs
 - Uniform designs
 - Minimax distance designs (etc.,)
 - Parametric designs
 - D-optimal designs for 3rd-order (or higher-order) models
 - Suggested I-optimal, L-optimal* designs as alternatives

*Cook, Nachtsheim "Model Robust Linear-Optimal Designs, Tech, 1983

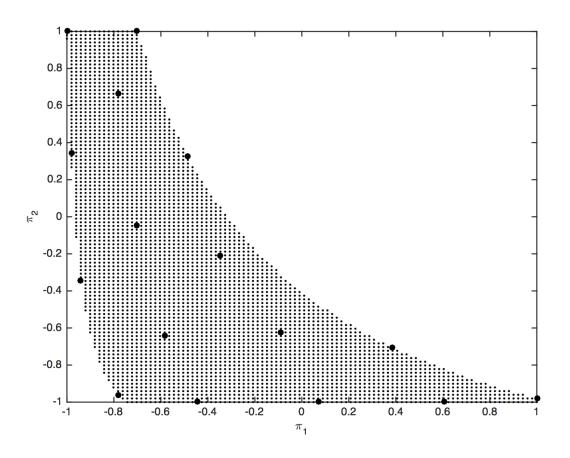
MV I-optimality

The MV I-optimality criterion:

$$V_{MV}(\xi_n) = r^{-1}v_{\chi}^{-1}\sum_{i=1}^{r}w_i^{-1}\operatorname{Trace}[\mathbf{D}_i\mathbf{M}_i]$$

 The MV criterion is simply the model-robust, L-optimality criterion of Cook and Nachtsheim (1982, Technometrics), where the weights are given by the variances, w_i-1.

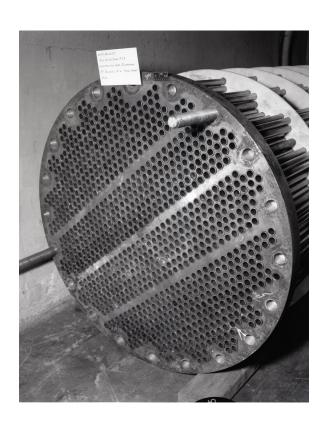
I-Optimal Design (n = 16)



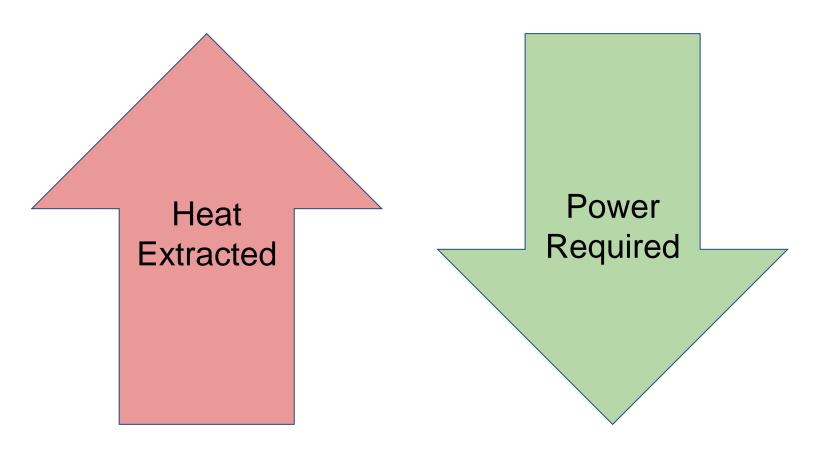
© no duplication without permission

40

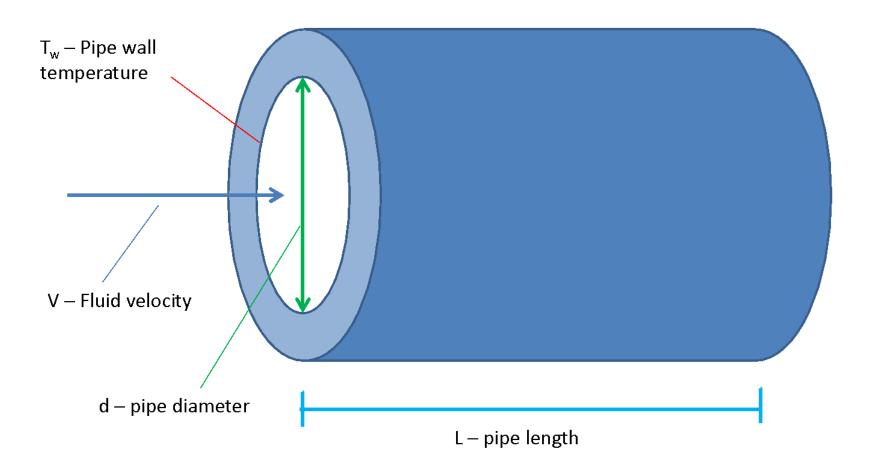
Designing Efficient Heat Exchangers



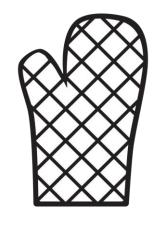
Why is this Multivariate?

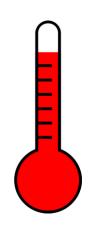


Schematic



Fluid Properties





Viscosity

Density

Thermal Conductivity

Temperature

A more complex example

- Design of a heat exchanger with bivariate response
 - Response 1 is the pressure loss (ΔP)
 - Response 2 is heat transfer rate (Q)
- There are 9 independent variables (next slides)
- There are four fundamental dimensions: L, M, T, and t
- Thus there will be 9 4 = 5 independent pi groups

© no duplication without permission

45

$$\begin{pmatrix} \Delta P \\ Q \end{pmatrix} = f(D, L, V, T_W, T_f, \mu, \rho, g, K)$$

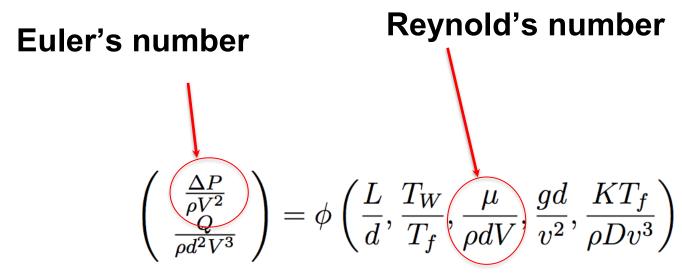
Variable	Symbol	SI Units	Base Quantity	
Pressure change	ΔΡ	Pa	M/Lt ²	
Heat transfer rate	Q	W	ML ² /t ³	
Inner diameter of pipe	d	M	L	
Length of pipe	L	M	L	
Mean velocity of fluid	V	m/s	L/t	
Temperature of inner pipe wall	T_{w}	K	Т	
Mean temperature of fluid at the	T_{f}	K	Т	
start of the tube				
Viscosity of fluid	μ	N-s/m ²	M/Lt	
Density of fluid	р	kg/m³	M/L ³	
Acceleration due to gravity	g	m/s ²	L/t ²	
Thermal conductivity of fluid	K	W/m-K	ML/Tt ³	

Derivation of DA Model

		Step 1 Result:		Step 2 Result:		Step 3 Result:		Step 4 Result:	
		Remove M from		Remove L from		Remove t from		Remove T from	
Step 0: Initialize		Step 0 using ρ		Step 1 using d		Step 2 using V/d		Step 3 using T_f	
Variable	Dimension	Var.	Dim.	Var.	Dim.	Var.	Dim.	Var.	Dim.
ΔP	$ML^{-1}t^{-2}$	$\Delta P/\rho$	$t^{-2}L^2$	$\Delta P/(\rho d^2)$	t^{-2}	$\Delta P/(\rho V^2)$	1	$\Delta P/(\rho V^2)$	1
Q	mL^2t^{-3}	Q/ρ	$t^{-3}L^5$	$Q/(ho d^5)$	t^{-3}	$Q/(\rho d^2V^3)$	1	$Q/(\rho d^2V^3)$	1
d	L	d	L	-			n	-	
$\mid L$	L	L	L	L/d	1	L/d	1	L/d	1
$\mid V$	Lt^{-1}	V	Lt^{-1}	V/d	t^{-1}			<u> </u>	
T_W	T	T_W	T	T_W	T	T_W	T	T_W/T_f	1
T_f	T	T_f	T	T_f	T	T_f	T		
μ	$ML^{-1}t^{-1}$	μ/ρ	$L^2 t^{-1}$	$\mu/(\rho d^2)$	t^{-1}	$\mu/(ho dV)$	1	$\mu/(ho dV)$	1
ρ	ML^{-3}			-		-		-	
g	Lt^{-2}	g	Lt^{-2}	g/d	t^{-2}	gd/v^2	1	gd/v^2	1
K	$MLt^{-1}t^{-3}$	K/ρ	$L^4T^{-1}t^{-3}$	$K/(\rho d^4)$	$T^{-1}t^{-3}$	$K/(\rho dV^3)$	T^{-1}	$KT_f/(\rho dV^3)$	1

$$\left(\begin{array}{c} \frac{\Delta P}{\rho V^2} \\ \frac{Q}{\rho d^2 V^3} \end{array}\right) = \phi \left(\frac{L}{d}, \frac{T_W}{T_f}, \frac{\mu}{\rho dV}, \frac{gd}{v^2}, \frac{KT_f}{\rho Dv^3}\right)$$

Derivation of DA Model



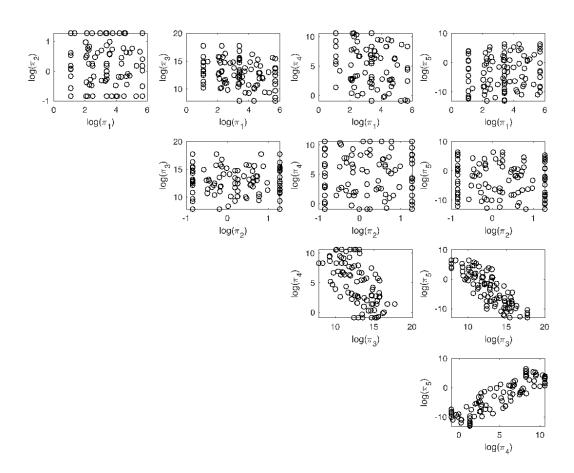
Design Generation Findings

Parametric design

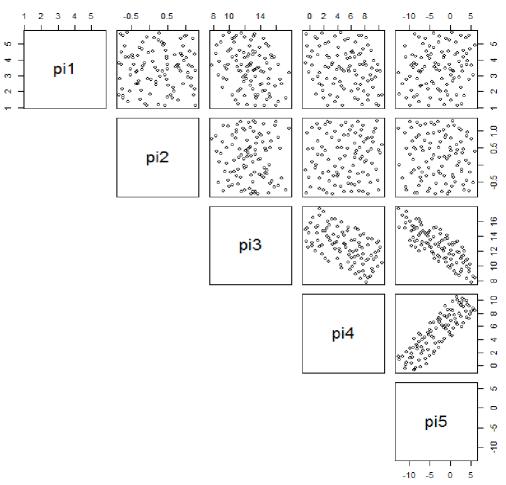
- Generate the designs using the 8-dimensional original variables space
- Use coordinate exchange with continuous optimizer for each coordinate
- Nonparametric design
 - Generate 100K uniformly distributed points in the 5D Pi design space for use as candidate set
 - Use candidate set with Fast Flexible Filling* to create designs

^{*}Ryan Lekivetz, Brad Jones, QREI, 2014

Parametric Design: 2D Projections, n = 100



Nonparametric Design: 2D Projections, n = 100



Comments/Conclusions

- DA is a powerful tool for modeling physical systems
 - Parsimony, Scalability, Dimension Reduction
- Multivariate responses not uncommon
- Gave generalization of Buckingham for multivariate responses
- Gave new criterion of multivariate parametric design
- Gave recommendations for design construction

Epilogue (Chris):

How did we stumble into the "design for DA" problem?

How did we statisticians get involved in DA?

- (c. 1980) Chris's early consulting—giving bad advice
- 1988 talk on DOE at Carlson school to Mgt Sci department
- 2011, Tom Albrecht, Boston Scientific
- 2013, M. Albrecht, Nachtsheim, Cook, T. Albrecht, Experimental Design for Engineering Dimensional Analysis, Technometrics
- 2014, Dennis and Chris DOE PhD seminar: Dan Eck proves the MV Buckingham Pi Theorem
- 2021, our paper

MY HOBBY: ABUSING DIMENSIONAL ANALYSIS

Thank you

