MaxPro Designs for Computer Experiments

V. Roshan Joseph (joint work with Shan Ba and Evren Gul)

FTC Webinar series, October 27, 2021

Supported by NSF DMS-1712642 and ARO W911NF-17-1-0007

Outline

- Introduction
- Space-filling design
 - Minimax, maximin, LHD
 - MaxPro
- Qualitative factors
- R package: MaxPro

Introduction

Joseph, V. R. (2016). "Space-Filling Designs for Computer Experiments: A Review," (with discussions and rejoinder), *Quality Engineering*, 28, 28-44.

Computer experiments

- Expensive black-box code
- Deterministic outputs
- Complex relationships

An Example: machining simulation

Gul, E., Joseph, V. R., Yan, H., and Melkote, S. N. (2018). "Uncertainty Quantification in Machining Simulations Using In Situ Emulator," *Journal of Quality Technology*, 50, 253-261.

Random Sample

Random Sample

Random Sample

Space-Filling Designs

- Definition:
 - designs that fill the space!
- What is the meaning of filling the space?
 - Maximin distance
 - Minimax distance
 - Uniform

Minimax design

$$D = \{x_1, x_2, \dots, x_n\}$$
 $x_i \in \mathcal{X} = [0, 1]^p$

Johnson, Moore, and Ylvisaker (1991)

$$\min_{\boldsymbol{D}} \max_{\boldsymbol{x} \in \mathcal{X}} d(\boldsymbol{x}, \boldsymbol{D}),$$

where
$$d(\boldsymbol{x}, \boldsymbol{D}) = \min_{\boldsymbol{x}_i \in \boldsymbol{D}} d(\boldsymbol{x}, \boldsymbol{x}_i)$$
.

Minimax design

Mak, S. and Joseph, V. R. (2018). "Minimax and Minimax Projection Designs Using Clustering," *Journal of Computational and Graphical Statistics*, 27, 166-178.

Maximin design

Johnson, Moore, and Ylvisaker (1991)

$$\max_{\boldsymbol{D}} \min_{\boldsymbol{x}_i, \boldsymbol{x}_j \in \boldsymbol{D}} d(\boldsymbol{x}_i, \boldsymbol{x}_j),$$

Maximin design

Maximin design or Sphere Packing Designs

Issues with Maximin and Minimax Designs

Poor projections!

Latin hypercube design

• McKay, Conover, Beckman (1979)

Latin hypercube design

Not good!

Maximin Latin hypercube design

 Morris and Mitchell (1995): Maximin design within the class of Latin hypercube designs £.

$$\min_{\mathbf{D}\in\mathcal{L}} \left\{ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{d^k(\mathbf{x}_i, \mathbf{x}_j)} \right\}^{1/k}$$

MmLHD

• MmLHD (20,2)

MmLHD

A two-dimensional projection of MmLHD (20,10)

MmLHD

$$\min_{\mathbf{D}\in\mathcal{L}} \left\{ \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{d^k(x_i, x_j)} \right\}^{1/k}$$

• Ensures good space-filling in *p* dimensions and uniform one-dimensional projections, but their projections in 2,...,*p*-1 dimensions can be poor.

Improvements to MmLHD

Draguljic, Santner, Dean (2012)

$$\min_{D} \left[\frac{1}{\binom{n}{2} \sum_{q \in J} \binom{p}{q}} \sum_{q \in J} \sum_{r=1}^{\binom{p}{q}} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \left\{ \frac{q^{1/2}}{d_{qr}(x_i, x_j)} \right\}^{k} \right]^{1/k}$$

Criterion is computationally expensive.

Maximum Projection (MaxPro) criterion

Weighted Euclidean distance:

Let
$$0 \leq \theta_i \leq 1$$

$$d(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta}) = \left(\sum_{l=1}^p \theta_l (x_{il} - x_{jl})^2\right)^{\frac{1}{2}}.$$

Modify the Morris-Mitchell criterion to

$$\min_{\mathbf{D}} \phi_k(\mathbf{D}; \boldsymbol{\theta}) = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{d^k(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta})}$$

Joseph, V. R., Gul, E., and Ba, S. (2015). "Maximum Projection Designs for Computer Experiments," *Biometrika*, 102, 371-380.

Bayesian criterion

- We don't know about θ before the experiment!
- Prior:

$$p(\boldsymbol{\theta}) = \frac{1}{(p-1)!}, \text{ for } \boldsymbol{\theta} \in S_{p-1},$$

where
$$S_{p-1} = \{ \boldsymbol{\theta} : \theta_1, \theta_2, \dots, \theta_{p-1} \geq 0, \sum_{i=1}^{p-1} \theta_i \leq 1 \}.$$

• Then, the criterion becomes

$$\min_{\mathbf{D}} \mathbb{E}(\phi_k(\mathbf{D}; \boldsymbol{\theta})) = \int_{S_{p-1}} \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{1}{d^k(\boldsymbol{x}_i, \boldsymbol{x}_j; \boldsymbol{\theta})} p(\boldsymbol{\theta}) d\boldsymbol{\theta}.$$

MaxPro criterion

If k = 2p, then

$$\mathbb{E}(\phi_k(\boldsymbol{D};\boldsymbol{\theta})) = \frac{1}{[(p-1)!]^2} \sum_{i=1}^{n-1} \sum_{j=1+1}^n \frac{1}{\prod_{l=1}^p (x_{il} - x_{jl})^2}.$$

MaxPro criterion:

$$\psi(\mathbf{D}) = \left(\frac{1}{\binom{n}{2}} \sum_{i=1}^{n-1} \sum_{j=1+1}^{n} \frac{1}{\prod_{l=1}^{p} (x_{il} - x_{jl})^2}\right)^{1/p}.$$

Example

Example

LHD property

- for any l, if $x_{il} = x_{jl}$ for $i \neq j$, then $\psi(\mathbf{D}) = \infty$.
- MaxPro design must have n distinct levels for each factor.
- LHD requirement is automatically enforced in the criterion!

Minimum distance (larger-the-better)

Distribution of MaxPro Points

Histogram of MaxPro Points

Distribution of MaxPro Points

Dette, H., and Pepelyshev, A. (2010), Generalized Latin Hypercube Design for Computer Experiments," *Technometrics*, 52, 421-429.

Gaussian Process Modeling

$$Y(\boldsymbol{x}) \sim GP(\mu, \sigma^2 R(.))$$

$$R(\boldsymbol{x}_i - \boldsymbol{x}_j; \boldsymbol{\alpha}) = e^{-\sum_{l=1}^p \alpha_l (x_{il} - x_{jl})^2}$$

An optimality result

Noninformative Prior:

$$p(\alpha) \propto 1$$
, for $\alpha \in \mathbb{R}^p_+$.

A MaxPro design minimizes

$$\mathbb{E}\{\sum_{i=1}^n \sum_{j\neq i} \boldsymbol{R}_{ij}\}$$

$$\begin{split} \text{Proof:} \quad \mathbb{E}(\sum_{i=1}^n \sum_{j \neq i} R_{ij}^\gamma) &= \sum_{i=1}^n \sum_{j \neq i} \mathbb{E}\left\{\prod_{l=1}^p e^{-\gamma \alpha_l (x_{il} - x_{jl})^2}\right\} \\ &= \sum_{i=1}^n \sum_{j \neq i} \left\{\prod_{l=1}^p \int_0^\infty e^{-\gamma \alpha_l (x_{il} - x_{jl})^2} d\alpha_l\right\} \\ &= \frac{1}{\gamma^p} \sum_{i=1}^n \sum_{j \neq i} \frac{1}{\prod_{l=1}^p (x_{il} - x_{jl})^2}, \end{split}$$

Another Justification

$$d_s(\boldsymbol{u}, \boldsymbol{v}) = \left(\frac{1}{p} \sum_{l=1}^p |u_l - v_l|^s\right)^{1/s}$$

$$\lim_{s\to 0} d_s(\boldsymbol{u}, \boldsymbol{v}) = \left(\prod_{l=1}^p |u_l - v_l|\right)^{1/p}$$

Joseph, V. R., Wang, D., Gu, L., Lv, S., and Tuo, R. (2019). "Deterministic Sampling of Expensive Posteriors Using Minimum Energy Designs". *Technometrics*, 61, 297-308.

Qualitative Factors

Joseph, V. R., Gul, E., and Ba, S. (2020), "Designing computer experiments with multiple type of factors: The MaxPro approach," *Journal of Quality Technology*, 52, 343-354.

Qualitative Factors

Tool material: Ti-6Al-4V, Ti-6Al-6V-2Sn,...-> **Nominal** Condition of tool: Excellent, very good, good,...-> **Ordinal**

Continuous and Nominal factors

- Sliced LHD (Qian 2012)
- Example: 2 continuous, 1 nominal at 3 levels

Continuous and Nominal factors

- Sliced LHD (Qian 2012)
- Example: 2 continuous, 1 nominal at 3 levels

Not an SI HD!

A MaxPro design minimizes

$$\mathbb{E}\{\sum_{i=1}^n \sum_{j\neq i} \mathbf{R}_{ij}(\boldsymbol{\alpha})\}$$

 So we only need to choose appropriate correlation functions for the different types of factors!

 Correlation function (continuous and discrete numeric factors are scaled in 0 to 1)

$$\exp\left\{-\sum_{l=1}^{p_1} \alpha_l |x_{il} - x_{jl}| - \sum_{k=1}^{p_2} \beta_k |u_{ik} - u_{jk}| - \sum_{h=1}^{p_3} \gamma_h I(v_{ih} \neq v_{jh})\right\}$$

- We can't use noninformative prior for discrete numeric and nominal factors.
- Informative prior:

$$\alpha_l \sim^{iid} Gamma(2, \bar{\alpha}_l), l = 1, \dots, p_1,$$

$$\beta_k \sim^{iid} Gamma(2, \bar{\beta}_k), k = 1, \dots, p_2,$$

$$\gamma_h \sim^{iid} Gamma(2, \bar{\gamma}_h), h = 1, \dots, p_3.$$

$$\begin{split} &\mathbb{E}\{\sum_{i=1}^{n}\sum_{j\neq i}R_{ij}(\alpha,\beta,\gamma)\}\\ &=\int\int\int\int\sum_{i=1}^{n}\sum_{j\neq i}R(w_{i}-w_{j};\alpha,\beta,\gamma)\prod_{l=1}^{p_{1}}\bar{\alpha}_{l}^{2}\alpha_{l}e^{-\bar{\alpha}_{l}\alpha_{l}}\prod_{k=1}^{p_{2}}\bar{\beta}_{k}^{2}\beta_{k}e^{-\bar{\beta}_{k}\beta_{k}}\prod_{h=1}^{p_{3}}\bar{\gamma}_{h}^{2}\gamma_{h}e^{-\bar{\gamma}_{h}\gamma_{h}}\,d\alpha\,d\beta\,d\gamma\\ &=\sum_{i=1}^{n}\sum_{j\neq i}\prod_{l=1}^{p_{1}}\int\bar{\alpha}_{l}^{2}\alpha_{l}e^{-\{|x_{il}-x_{jl}|+\bar{\alpha}_{l}\}\alpha_{l}}d\alpha_{l}\prod_{k=1}^{p_{2}}\int\bar{\beta}_{k}^{2}\beta_{k}e^{-\{|u_{ik}-u_{jk}|+\bar{\beta}_{k}\}\beta_{k}}d\beta_{k}\prod_{h=1}^{p_{3}}\int\bar{\gamma}_{h}^{2}\gamma_{h}e^{-\{I(v_{ih}\neq v_{jh})+\bar{\gamma}_{h}\}\gamma_{h}}d\gamma_{h}\\ &=\sum_{i=1}^{n}\sum_{j\neq i}\prod_{l=1}^{p_{1}}\frac{\bar{\alpha}_{l}^{2}}{\{|x_{il}-x_{jl}|+\bar{\alpha}_{l}\}^{2}}\prod_{k=1}^{p_{2}}\frac{\bar{\beta}_{k}^{2}}{\{|u_{ik}-u_{jk}|+\bar{\beta}_{k}\}^{2}}\prod_{h=1}^{p_{3}}\frac{\bar{\gamma}_{h}^{2}}{\{I(v_{ih}\neq v_{jh})+\bar{\gamma}_{h}\}^{2}}. \end{split}$$

MaxPro criterion

Minimize

$$\frac{1}{\binom{n}{2}} \sum_{i=1}^{n} \sum_{j \neq i} \frac{1}{\prod_{l=1}^{p_1} \{|x_{il} - x_{jl}| + \bar{\alpha}_l\}^2 \prod_{k=1}^{p_2} \{|u_{ik} - u_{jk}| + \bar{\beta}_k\}^2 \prod_{h=1}^{p_3} \{I(v_{ih} \neq v_{jh}) + \bar{\gamma}_h\}^2}$$

•
$$\bar{\alpha}_l=0$$
, $\bar{\beta}_k=1/m_k$, $\bar{\gamma}_h=1/L_h$

Number of levels

- Three Continuous: rake angle, relief angle, and helix angle
- One discrete numeric: number of flutes
- Two nominal factors

Level	Titanium Alloy	Tool Path Optimization
1	Ti-6AI-4V	None
2	Ti-6AI-2Sn-4Zr-6Mo	In-Cut
3	Ti-6AI-2Sn-4Zr-2Mo	Air-Cut
4	Ti-6AI-6V-2Sn	Both
5	Ti-4AI-4Mo-2Sn	
6	Ti-10V-2Fe-3AI	

- Run size n = 48
- SLHD with 5 points in each slice would require 360 runs!

Six symbols for six levels of Titanium alloy

Four symbols for four levels of tool path optimization

Three symbols for three levels of number of flutes

R Package: MaxPro

Ba, S. and Joseph, V. R. (2018). "MaxPro: Maximum Projection Designs". R 4.1-2.

MaxProLHD

> D=MaxProLHD(n=40,p=2)\$Design

MaxPro

> D2=MaxPro(InitialDesign = D)\$Design

MaxProQQ

- > n=40
- > D1=MaxProLHD(n=40,p=2)\$Design
- > D2=rep(1:4,10)
- > D=MaxProQQ(InitialDesign = cbind(D1,D2),p_nom = 1)\$Design

MaxProAugment

One-at-a-time greedy procedure:

$$\mathbf{x}_{n+1} = \min_{\mathbf{u} \in \mathcal{C}} \sum_{i=1}^{n} \frac{1}{\prod_{l=1}^{p} |u_l - x_{il}|^2}.$$

Joseph, V. R. (2016), "Rejoinder," Quality Engineering, 28, 42-44.

Non-Adaptive Sequential Designs

- Need a candidate set
- > n=40
- > cand=CandPoints(100*n,p_cont = 2,l_nom = 4)

2 Continuous1 Nominal (4 levels)

Non-Adaptive Sequential Designs

- st=matrix(cand[1,],nrow = 1)
- $D=MaxProAugment(st,CandDesign = cand, nNew = n-1,p_nom = 1,l_nom=4)$ \$Design

2 Continuous 1 Nominal (4 levels)

11

3

10 10

Constrained Regions

> D=MaxProAugment(st,CAND,nNew=29)\$Design

to appear.

Georgia Tech College of Engineering
H. Milton Stewart School of
Industrial and Systems Engineering

Validation experiments

> D=MaxProAugment(exist,CAND,nNew = 10)\$Design[-(1:9),]

Nested Designs

> D3=MaxProLHD(n3,p)\$Design

Nested Designs

- > st=D3[sample(1:n3,1),]
- > D2=MaxProAugment(st,D3,n2-1)\$Design

Nested Designs

- > st=D2[sample(1:n2,1),]
- > D1=MaxProAugment(st,D2,n1-1)\$Design

