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GERALD J. HAHN
• 46 years at GE Global Research Center
• 26 years as Manager of the Applied Statistics Program
• First Chair of ASA Quality and Productivity Section
Role model for “leadership in developing, promoting, and 
successfully improving the quality and productivity of products and 
organizational performance using statistical concepts and methods”

Some of Gerry’s hallmarks: Seeing what is important, articulating it clearly and leading to way to the right solution
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REFLECTIONS ON MY CAREER

Privileged to have my career span some exciting times in statistics:

1994            – Ph.D. University of Waterloo (Advisor: C.F.J. Wu)
1994-1996  – Assistant Professor, Department of Statistics and Actuarial Science, Western University 
1996-2004  – Assistant/Associate Professor, Department of Statistics, Virginia Tech
2002                          – Visiting Professor at Arizona State University
2004-2021  – Research Scientist, Statistical Sciences Group, Los Alamos National Laboratory

Innovation in graphical capabilities

Dramatic increase in computational power for algorithmic searches

Renaissance of design of experiments

Statistical Engineering (Hoerl and Snee, 2010) à ISEA (isea-change.org)

Dawn of “data science” and “big data”

David Bellhouse (Western Ontario): “If you are lucky, you might have a handful of ideas in your 
career that really have a broader impact. The profession needs both explorers and settlers.”
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MY ROLE AS STATISTICIAN IN COLLABORATIONS

How my role has evolved throughout my career:

Customer comes in with a 
problem (want to collect some 
data)

Take their description and find 
the right product to solve the 
problem (create/find the right 
design to match needs)

Send them on their way, until 
they have another problem 
(often, help with the analysis)

Early on: 
Sales clerk approach
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**In this talk, illustrations will focus on design of Experiments**



MY ROLE AS STATISTICIAN IN COLLABORATIONS

Meet customer in their space (build 
context for data collection)

After understanding what is important 
to them, develop several possibilities 
(identify several options to compare)

Discuss what they like/dislike about 
options (deeper understanding of their 
priorities and context)

Iterate until they are satisfied with the 
final choice (build a deeper level of 
comfort for customer with design)

Later: 
Interior designer approach

Key differences:
- Collaborative as a team member
- Deeper understanding of what is the right solution
- Multiple options discussed and compared
- Iterative – creating new designs is easy compared 

to executing the experiment
- Experimenter owns the final decision
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SALES CLERK VS INTERIOR DESIGNER

For organization:
• Class of problems that can be solved is much bigger
• Better definition of problem to be solved
• Better solutions
• Collaborators feel more ownership of statistical part 

of solution
• Collaborators gain insights into statistical expertise 

that they can use for other projects

Advantages of Designer Approach

For statistician:
• Contributions have potential for much larger impact
• Creates pull for involvement in subsequent projects
• Full team member status (not technical support)
• Greater professional fulfillment
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HOW DID WE GET FROM THERE TO HERE?

• Need #1: Richer set of tools to compare designs

• Need #2: Ability to handle multi-faceted goals and protection 
from the unexpected

• Need #3: Ability to hedge risk from lack of knowledge with a 
“learn and leverage” approach

• Need #4: Improved structure for team discussions and decision-
making

Pareto Fronts with flexible criteria

Innovation: Fraction of Design Space (FDS) Plot
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DMRCS, Collaboration & Graphical Tools

Sequential Design of Experiments (SDoE)



NEED #1 – TOOLS FOR COMPARING DESIGNS
• Need #1: Richer set of tools to compare designs

We make better decisions if we have a variety of choices:

We are much more engaged and discriminating about the fit of the solution to 
our problem if we have choices and can evaluate/compare their differences

Goal: Have a graphical and/or numerical summary that matches the 
priority of the study to compare the designs
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NEED #1 – COMPARING DESIGNS (CONTINUED)
• Time travel back to 2000
• Goal: compare how well different designs predict throughout 

input space 

Worst case prediction variance

Average prediction variance

Problems: 
• Too simplistic a summary for performance across a higher dimensional space
• We are going to use our model to predict at multiple input locations – not “average” 

or “worst”
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NEED #1 – COMPARING DESIGNS (CONTINUED)
• Time travel back to 2000
• Goal: compare how well different designs predict throughout 

input space Variance-Dispersion Graph

Problems: 
• Relative emphasis changes with different # inputs
• Designed for spherical region
• Sometimes multiple (1-3) lines for each design
• Hard to know where to look
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NEED #1 – COMPARING DESIGNS (CONTINUED)
• Single line for each design
• Same interpretation regardless of dimension, shape of region
• Comparison points easier to identify (best, worst, median)
• (Easy to generate)

Versatile:
• Any shaped input region
• Compare different sizes
• Robustness to model choice
• Generalized linear model 

parameter choices
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NEED #1 – COMPARING DESIGNS (CONTINUED)
Fast forward to today (JMP)
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NEED #1 – COMPARING DESIGNS (CONTINUED)
Process for data collection planning with collaborators:
- Begin with discussion about priorities – what do success and failure look 

like?
- Creating designs is an iterative process – be responsive to new information, 

emphasize that creating a new design is easy
- Present multiple alternatives with their pros and cons
- Use graphical methods (like FDS plot, if appropriate) to demonstrate 

differences between choices
- Let experimenters make final choice of design between sensible 

alternatives

Greater comfort for experimenter about why this is the right design 
Better chance for following implementation
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HOW DID WE GET FROM THERE TO HERE?

• Need #1: Richer set of tools to compare designs

• Need #2: Ability to handle multi-faceted goals and protection 
from the unexpected

• Need #3: Ability to hedge risk from lack of knowledge with a 
“learn and leverage” approach

• Need #4: Improved structure for team discussions and decision-
making

Pareto Fronts with flexible criteria

Fraction of Design Space (FDS) Plot

DMRCS, Collaboration & Graphical Tools

Sequential Design of Experiments (SDoE)
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NEED 2: ABILITY TO HANDLE MULTI-FACETED GOALS AND 
PROTECTION FROM THE UNEXPECTED

1. Result in good fit of the model to the data
2. Provide good model parameter estimates
3. Provide good prediction throughout the design space.
4. Provide an estimate of “pure” experimental error.

5. Give sufficient information to allow for lack of fit test.
6. Provide a check on the homogeneous variance 

assumption.

7. Be insensitive (robust) to the presence of outliers in 
the data.

8. Be robust to to errors in the control of design levels.

9. Allow models of increasing order to be constructed 
sequentially.

10. Allow for experiments to be done in blocks.

11. Be cost-effective.

Good estimation and 
prediction for chosen 
model

Ability to test various 
aspects of the model

Protection if things go 
wrong

Flexibility to run and 
expand experiment

Cost

Myers, Montgomery, Anderson-Cook RSM (2016) p. 370

There are many potential priorities to consider when designing an experiment

D-, A-optimal

I-, G-optimal
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There are many potential priorities to consider when designing an experiment
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“Optimal” is 
conditional on (1

) a particu
lar 

model and (2) the
 experiment b

eing execute
d 

the way it w
as planned

We are often se
eking

 to squeeze more and 

more out of each e
xperiment –

one crite
rion 

might b
e too narrow
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NEED 2 (CONTINUED) PARETO FRONT BASICS

Response only

Input only

Hands user the control to select what balance makes sense for their experiment(maximin)

(m
ax

im
in

)

Other designs – non-contenders

Input-Response 
Space-Filling
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NEED 2 (CONTINUED)
Some Examples in the Literature
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NEED 2: ABILITY TO HANDLE MULTI-FACETED GOALS AND 
PROTECTION FROM THE UNEXPECTED  SUMMARY
Experience has taught me that: 

1. Getting the model right before you have collected the data is not 
common or easy.
2. Different stakeholders have different priorities for the experiment. 
Don’t require everyone to come to consensus on one goal.
3. A close-to-optimal design that can survive some surprises is better 
than a non-robust optimal design.

The Pareto front approach allows for:
- Multiple user-selected priorities to be considered
- Multiple competitive designs to be created and compared
- Graphical tools to facilitate discussion about alternatives
- Understanding of how severe the trade-offs are for different 

priorities
- Intentional protection from things not going as planned 

(imperfect knowledge and/or problems running experiment)

Shape of Pareto Fronts

Better à

Be
tte

r 
à
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HOW DID WE GET FROM THERE TO HERE?

• Need #1: Richer set of tools to compare designs

• Need #2: Ability to handle multi-faceted goals and protection 
from the unexpected

• Need #3: Ability to hedge risk from lack of knowledge with a 
“learn and leverage” approach

• Need #4: Improved structure for team discussions and decision-
making

Pareto Fronts with flexible criteria

Fraction of Design Space (FDS) Plot

DMRCS, Collaboration & Graphical Tools

Sequential DoE and NUSF
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NEED 3: HEDGE RISK WITH A “LEARN AND LEVERAGE” APPROACH

Some of my favorite solutions for incorporating knowledge into experiments:
1. Sequential Design of Experiments

2. Non-Uniform Space-Filling Designs

If you are going on a long trip, would you rather:
1. Commit to exactly the route, street-by-street at the start of your journey 
2. Plan the first part of your route, and then each evening adapt the next step of 

the journey using updated information
Same logic applies to collecting data – why commit the entire experimental 
budget at the beginning? Why not learn as we go?

Space-filling designs that provide the experimenter 
with control to change the density of points to 
match their level of interest in a region
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SEQUENTIAL DESIGN OF EXPERIMENTS
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SEQUENTIAL DESIGN OF EXPERIMENTS

Conceptual Space-Filling Example – 2 factors 18 run budget

Pilot study Can we get quality data and 
measure what we need?

Exploration
Understand basic relationship 
between inputs and response

Model Building/ 
Refinement

Verify model adequately 
characterizes relationship with 
acceptable level of uncertainty

Optimization
Focus on portion of region with 
best values of the response

Confirmation
Verify results for production or 
operational use

Total Budget: 18 runs
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SEQUENTIAL DESIGN OF EXPERIMENTS

Conceptual Example – 2 factors 18 run budget

Total Budget: 18 runs

One-Shot Experiment
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NON-UNIFORM SPACE-FILLING (NUSF) DESIGNS
Key to NUSF: define weights for each 
location in the input space that reflect 
experimenter interest

Assign higher weights to regions where:
- Response values are better (optimize)
- More interesting features (exploration)
- Response changing more quickly 

(exploration)
- Prediction has larger uncertainty 

(model refinement)
- Discrepancy is larger between 

computer model and observed data 
(calibration)
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NON-UNIFORM SPACE-FILLING (NUSF) DESIGNS

MWR increases à more non-uniform

First design

Augmented design

To tune the degree of non-uniformity: scale raw weights from [Min, Max] à [1, MWR]

If MWR = 1 ßà uniform              as MWR increases, degree of non-uniformity increases
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NON-UNIFORM SPACE-FILLING (NUSF) DESIGNS
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BUILDING A SEQUENCE OF EXPERIMENTS

MWR increases à more non-uniform
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Case 1: Exploration                 USF 
Augmented
USF to fill in (same or refined region)

Case 2: Optimization              USF Augm NUSF
To reduce uncertainty

Augm NUSF
To target optimum

Augm IRSF
To balance spacing of 
inputs and responses

Case 3: Prediction 
throughout USF 



HOW DID WE GET FROM THERE TO HERE?

• Need #1: Richer set of tools to compare designs

• Need #2: Ability to handle multi-faceted goals and protection 
from the unexpected

• Need #3: Ability to hedge risk from lack of knowledge with a 
“learn and leverage” approach

• Need #4: Improved structure for team discussions and decision-
making

Pareto Fronts with flexible criteria

Fraction of Design Space (FDS) Plot

DMRCS, Collaboration & Graphical Tools

Sequential DoE and NUSF
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NEED 4: IMPROVED STRUCTURE FOR TEAM DISCUSSIONS AND 
DECISION-MAKING

Some of ideas:
• DMAIC: Define-Measure-Analyze-Improve-Control for Problem-Solving
• DMRCS: Define-Measure-Reduce-Combine-Select for Decision-Making

• Facilitating Discussion and Decision-Making

• Collaboration Strategies

• STATISTICAL ENGINEERING
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We are only effective as statisticians when our voices and message are heard.



COMMON PROBLEMS WITH DECISION-MAKING

1. Narrow framing: limiting choices and options
2. Confirmation bias: seeing and evaluating data 

based on current leading choice
3. Thinking too short-term: not including longer 

term consequences into decision
4. Overconfidence: not building in sufficient 

uncertainty about future
5. Team-dynamics: personalities, process, 

competing priorities
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NEED 4: IMPROVED STRUCTURE FOR TEAM DISCUSSIONS AND 
DECISION-MAKING

Define

Measure

Reduce

Combine

Select

- What is important for this experiment?
- What designs are available to choose between?

- What is the right criterion to measure the important attribute?
- High quality data to assess designs for identified criteria?
- Gather relevant information

- Are some aspects secondary in importance? Remove or defer?
- Can some designs be eliminated as implausible or non-contenders?

- How can I evaluate trade-offs between criteria (that are probably 
on different scales)?

- How much do I value the different criteria?
- Which solution is best given my priorities?
- How does this solution compare to other options?
- Can I defend my choice?

Example: Choosing a Design
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NEED 4: IMPROVED STRUCTURE FOR TEAM DISCUSSIONS AND 
DECISION-MAKING
Anderson-Cook, C.M., Lu, L. (2018) “Graphics to Facilitate Informative Discussion and 
Team Decision-Making” Applied Stochastic Models in Business and Industry (with 
discussion and rejoinder)
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NEED 4: IMPROVED STRUCTURE FOR TEAM DISCUSSIONS AND 
DECISION-MAKING
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NEED 4: IMPROVED STRUCTURE FOR TEAM DISCUSSIONS AND 
DECISION-MAKING

Collaboration Strategies
• Anderson-Cook, C.M., Lu, L., Parker, P.A. (2019) “Effective 

Interdisciplinary Collaboration Between Statisticians and Other Subject 
Matter Experts” Quality Engineering (with discussion and rejoinder)

• 2020 FTC talk: https://www.youtube.com/watch?v=9PUqc2puBag

STATISTICAL ENGINEERING 
• International Statistical Engineering Association 

(free membership isea-change.org)
• ISEA Workshop: Nov 18-19
• 2012 Quality Engineering Special Issue

( https://www.tandfonline.com/toc/lqen20/24/2?nav=tocList )
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CONCLUSIONS

We needed several key elements:
• Ability to generate multiple designs that allow for comparisons
• Ability to have the right tools/graphics to make specific and meaningful comparisons
• Ability to collect data, learn from it, pivot using what we learn, collect the next set of data
• Develop “human skills*”, confidence and strategies to lead and/or be full team members 

on collaborative teams 

We are in exciting times for statistics – many new areas emerging, where we 
can make important contributions. 
Consider new ideas to help improve problem-solving and decision-making. 
Let the needs of collaborators, practitioners guide our innovation.
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