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Problem Description
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Comparing lifetime distributions for different populations is important in a 
variety of fields:
u Reliability Engineering
u Survival Analysis
u Customer Analytics

Common goal:

Compare two lifetime distributions to evaluate their similarity

Contextual goal: compare reliabilities of two related populations

Problem Description
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Problem Description
Nelson[1] describes an accelerated life test 
in which two different versions of a toaster
are repeatedly cycled. 

The different versions correspond to old 
and new snubbers (toaster component).

There were 𝑛! = 52 “old” toasters and 
𝑛" = 54 “new” toasters involved in this 
comparison.
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Problem Description

OLD
90 410 658 790+ 980+
90 410+ 658+ 790+ 980+

90+ 485 731 790+ 980+
190+ 508 739 790+ 980+
218+ 600+ 739+ 790+
218+ 600+ 739+ 790+
241+ 600+ 739+ 790+
268 600+ 739+ 790+

349+ 631 790 855
378+ 631 790+ 980
378+ 631 790+ 980
410 635 790+ 980+

NEW
45+ 311 608+ 670 1164+
47 417+ 608+ 670 1198
73 485+ 608+ 731+ 1198+

136+ 485+ 608+ 838 1300+
136+ 490 608+ 964 1300+
136+ 569+ 608+ 964 1300+
136+ 571 608+ 1164+
136+ 571+ 608+ 1164+
145 575 608+ 1164+

190+ 608 608+ 1164+
190+ 608 608+ 1164+
281+ 608+ 630 1164+
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Problem Description
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Practical Equivalence
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Practical Equivalence
u The comparison of two groups is often carried out via two-sample 

hypothesis tests or hypothesis tests that evaluate the need for separate 
models vs. a single joint model

u Commonly, the null hypothesis associated with such tests assumes that 
the groups are the same and evidence is sought for dissimilarity

u However, it is often the case that a baseline assumption of 
inequivalence is more appropriate, in which case evidence is sought 
for equivalence

u Such is the philosophy of equivalence testing[2]
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Practical Equivalence
u Central to this philosophy is the understanding that two quantities 

don’t need to be identical for them to be practically equivalent.

u This notion acknowledges that their exists a size of difference that is 
practically unimportant.

u Methodologies that emphasize practical importance over statistical 
significance are gaining popularity in the wake of the current p-value 
controversy and reproducibility crisis[3].

u Here we propose a methodology for the comparison of parametric 
lifetime regressions that explicitly accounts for the notion of practical 
equivalence, and that is rooted in Bayesian estimation.
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Probability of Agreement
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Probability of Agreement
u We extend the use of the probability of agreement (PA) to the 

comparison of lifetime distributions with censored data.

u In general, given characteristics 𝜃! and 𝜃", the PA explicitly quantifies 
the likelihood that 𝜃! and 𝜃" are practically equivalent:

𝑃𝐴 = Pr 𝜃! − 𝜃" < 𝛿

where 𝛿 > 0 is the equivalence margin and −𝛿, 𝛿 is the region of 
practical equivalence, within which differences are considered 
practically negligible

u Large PA values indicate strong agreement while small values signify 
disagreement.
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Probability of Agreement
u This methodology has been broadly applied to a variety of scenarios 

including
u The comparison of measurement systems[4,5]

u The comparison of fitted or predicted response surfaces[6,7]

u The comparison of sequential experimental results[8]

u Here we take 𝜃! and 𝜃" to be quantities that summarize two lifetime 
distributions and we use the PA to quantify the likelihood that they are 
practically equivalent.

u Because 𝜃! and 𝜃" are parameters (or functions of parameters), the 
Bayesian paradigm is most appropriate, allowing for intuitive 
interpretation
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Probability of Agreement
u We define the Bayesian probability of agreement (BPA) in this setting 

as
𝐵𝑃𝐴 = Pr 𝜃! − 𝜃" < 𝛿|data

which is a posterior probability calculated given observed data and 
assuming −𝛿, 𝛿 is the region of practical equivalence defined earlier.

u Here we assume that 𝑇#$~𝐹$ is a random variable representing the 
lifetime of unit 𝑖 in group 𝑗, 𝑖 = 1,2, … , 𝑛$, 𝑗 = 1,2.

u In this work we assume the lifetime distribution 𝐹$ is Weibull, lognormal, 
or gamma, though other distributional assumptions may easily be 
accommodated.
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Probability of Agreement
u We further assume that 𝜃$ is a parameter or function of parameters 

that usefully describes the lifetime distribution 𝐹$, such as:

𝜃! = Pr 𝑇"! ≥ 𝑡 = 1 − 𝐹! 𝑡 or                  𝜃! = 𝐹!#$ 𝑝

u As we can see, 𝜃! and 𝜃" may themselves be functions of input(s) such 
as 𝑡, 𝑝, or other context-dependent covariates 𝒙.

u Generally speaking, interest lies in comparing 𝜃! = ℎ 𝒙!%𝜷! with 𝜃" =
ℎ 𝒙"%𝜷" .

u The BPA can then be calculated and visualized across a range of  
relevant values of the inputs, thereby quantifying the similarity of 𝜃!
and 𝜃" in regions of interest.
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Probability of Agreement
u The BPA is straightforward to interpret: it quantifies the strength of 

evidence in favour of the statement 𝜃! − 𝜃" < 𝛿
u Values close to 1 provide strong evidence in favour of this statement
u Values close to 0 provide strong evidence in favour of this statement’s 

complement

u How large the BPA needs to be in order to believe 𝜃! − 𝜃" < 𝛿 is 
determined by the user.

u To ensure practically useful conclusions, 𝛿 should be chosen carefully 
to provide a meaningful comparison in the context of the problem.
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Probability of Agreement
u Given the observed data 𝑡#$, 𝑐#$, 𝒙#$ , 𝑖 = 1,2, … , 𝑛$, 𝑗 = 1,2 and the joint 

posterior 𝑝 𝜃!, 𝜃"|𝒕, 𝒄, 𝒙 the BPA may be calculated as 

𝐵𝑃𝐴 =C
𝒟

𝑝 𝜃!, 𝜃"|𝒕, 𝒄, 𝒙 𝑑𝜃!𝑑𝜃"

where 𝒟 is the region for which 𝜃! − 𝜃" < 𝛿. However, in general, this 
integral cannot be evaluated analytically.

u For ample flexibility, we approximate 𝑝 𝜃!, 𝜃"|𝒕, 𝒄, 𝒙 via MCMC 
simulation and estimate the BPA as follows:

F𝐵𝑃𝐴 =
1
𝑀
H
'(!

)

𝕀 𝜃!' − 𝜃"' < 𝛿
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Probability of Agreement
u The posterior draws 𝜃$!, 𝜃$", … , 𝜃$) (for both 𝑗 = 1,2) are obtained by 

taking draws from the posteriors of 𝜷$!, 𝜷$", … , 𝜷$) and calculating 𝜃$' =
ℎ 𝒙$%𝜷$' for each 𝑗 = 1,2 and 𝑘 = 1,2, … ,𝑀.

u Note that the value 𝑀 is the number of posterior draws retained after a 
sufficient burn-in and thinning.

u We assume diffuse priors for 𝜷$ (i.e., 𝛽*$, 𝛽!$, … , 𝛽+$~N 0,1000 ) to reflect 
the assumption that a practitioner may not have strong prior 
knowledge. 

u We use simulation to investigate the effect of the choice of prior
20



Examples

21



Toaster Snubber Example
Nelson[1] describes an accelerated life test 
in which two different versions of a toaster
are repeatedly cycled. 

The different versions correspond to old 
and new snubbers (toaster component).

There were 𝑛! = 52 “old” toasters and 
𝑛" = 54 “new” toasters involved in this 
comparison.
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Toaster Snubber Example
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Toaster Snubber Example
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𝜃$ = 1 − 𝐹$ 𝑡



Toaster Snubber Example
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Pr 𝜃! − 𝜃" < 𝛿|data



Toaster Snubber Example
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𝜃$ = 𝐹$,! 𝑝

Pr 𝜃! − 𝜃" < 𝛿|data



Toaster Snubber Example
What did we find?

1. As the number of cycles increases, agreement steadily decreases

2. The timing and magnitude of this disagreement depends on 𝛿

3. Agreement increases slightly for very large numbers of cycles 
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Spring Example
Meeker et al.[9] describes an accelerated 
life test performed to assess the reliability
of a spring under new and old processing
methods.

The goal was to determine whether the 
new processing method would meaningfully 
improve the spring’s fatigue life (the 
number of kilocycles sustained before 
failure).

108 (𝑛! = 52 “old” and 𝑛" = 54 “new”) 
springs were tested for up to 5000 kilocycles 
in a 2×2×3 factorial experiment. 28



Spring Example
In addition to the processing method, two 
other design factors were considered and 
tested at different stress levels.
u Process Temperature {500,1000} °F
u Stroke Displacement {50, 60, 70} mils

9 replicates were performed at each 
factorial combination of these factors’ 
levels.

A Weibull distribution was used to model 
the fatigue life of the spring, with stroke
and temperature included as covariates.
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What did we find?
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Summary
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Summary
u The Bayesian probability of agreement provides an intuitive and 

practically useful means of comparing reliabilities in two populations
u It directly quantifies the likelihood that the reliabilities (or other 

functions of the lifetime distributions) are practically equivalent

u Whether one decides that the reliability in two populations is sufficiently 
similar to combine them, and use a single reliability model, requires 
practical decisions made by the practitioner:
u How different is too different?
u How large a value of the BPA is large enough?
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Try it Yourself!

https://nathaniel-t-stevens.shinyapps.io/BPA_Lifetime_app/
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https://nathaniel-t-stevens.shinyapps.io/BPA_Lifetime_app/


THANK YOU!
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