Bayesian probability of agreement for comparing survival or reliability functions with parametric lifetime regression models

NATHANIEL T. STEVENS

FALL TECHNICAL CONFERENCE WEBINAR SERIES
OCTOBER 15, 2021
Acknowledgements

Acknowledgements

Søren Bisgaard (1951-2009)

- Bachelor’s (1975) and Master’s (1979) degrees in engineering and PhD (1985) in statistics.
- Prolific author and researcher in industrial statistics and quality engineering, who emphasized practical problem solving.
- His impact and importance was recognized by several awards including the Wilcoxon Prize, Shewell Award, Brumbaugh Award, Shewhart Medal, George Box Medal, ASQ and ASA Fellowships.
- Instrumental in establishing ENBIS.
Outline

- Problem Description
- Practical Equivalence
- The (Bayesian) Probability of Agreement
- Examples
- Summary
Problem Description
Comparing lifetime distributions for different populations is important in a variety of fields:

- Reliability Engineering
- Survival Analysis
- Customer Analytics

Common goal:

Compare two lifetime distributions to evaluate their similarity

Contextual goal: compare reliabilities of two related populations
Problem Description

Nelson\cite{1} describes an accelerated life test in which two different versions of a toaster are repeatedly cycled.

The different versions correspond to old and new snubbers (toaster component).

There were $n_1 = 52$ “old” toasters and $n_2 = 54$ “new” toasters involved in this comparison.
Problem Description

<table>
<thead>
<tr>
<th>OLD</th>
<th>NEW</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 410 658 790+ 980+</td>
<td>45+ 311 608+ 670 1164+</td>
</tr>
<tr>
<td>90 410+ 658+ 790+ 980+</td>
<td>47 417+ 608+ 670 1198</td>
</tr>
<tr>
<td>90+ 485 731 790+ 980+</td>
<td>73 485+ 608+ 731+ 1198+</td>
</tr>
<tr>
<td>190+ 508 739 790+ 980+</td>
<td>136+ 485+ 608+ 838 1300+</td>
</tr>
<tr>
<td>218+ 600+ 739+ 790+</td>
<td>136+ 490 608+ 964 1300+</td>
</tr>
<tr>
<td>218+ 600+ 739+ 790+</td>
<td>136+ 569+ 608+ 964 1300+</td>
</tr>
<tr>
<td>241+ 600+ 739+ 790+</td>
<td>136+ 571 608+ 1164+</td>
</tr>
<tr>
<td>268 600+ 739+ 790+</td>
<td>136+ 571+ 608+ 1164+</td>
</tr>
<tr>
<td>349+ 631 790 855</td>
<td>145 575 608+ 1164+</td>
</tr>
<tr>
<td>378+ 631 790+ 980</td>
<td>190+ 608 608+ 1164+</td>
</tr>
<tr>
<td>378+ 631 790+ 980</td>
<td>190+ 608 608+ 1164+</td>
</tr>
<tr>
<td>410 635 790+ 980+</td>
<td>281+ 608+ 630 1164+</td>
</tr>
</tbody>
</table>
Problem Description
Practical Equivalence
Practical Equivalence

- The comparison of two groups is often carried out via two-sample hypothesis tests or hypothesis tests that evaluate the need for separate models vs. a single joint model.

- Commonly, the null hypothesis associated with such tests assumes that the groups are the same and evidence is sought for dissimilarity.

- However, it is often the case that a baseline assumption of inequivalence is more appropriate, in which case evidence is sought for equivalence.

- Such is the philosophy of equivalence testing\(^2\)
Central to this philosophy is the understanding that two quantities don’t need to be *identical* for them to be *practically equivalent*.

This notion acknowledges that there exists a size of difference that is practically unimportant.

Methodologies that emphasize *practical importance* over *statistical significance* are gaining popularity in the wake of the current p-value controversy and reproducibility crisis\(^3\).

Here we propose a methodology for the comparison of parametric lifetime regressions that explicitly accounts for the notion of practical equivalence, and that is rooted in Bayesian estimation.
Probability of Agreement
We extend the use of the probability of agreement (PA) to the comparison of lifetime distributions with censored data.

In general, given characteristics θ_1 and θ_2, the PA explicitly quantifies the likelihood that θ_1 and θ_2 are practically equivalent:

$$PA = \Pr(|\theta_1 - \theta_2| < \delta)$$

where $\delta > 0$ is the equivalence margin and $(-\delta, \delta)$ is the region of practical equivalence, within which differences are considered practically negligible.

Large PA values indicate strong agreement while small values signify disagreement.
This methodology has been broadly applied to a variety of scenarios including:

- The comparison of measurement systems\(^4,5\)
- The comparison of fitted or predicted response surfaces\(^6,7\)
- The comparison of sequential experimental results\(^8\)

Here we take \(\theta_1\) and \(\theta_2\) to be quantities that summarize two lifetime distributions and we use the PA to quantify the likelihood that they are practically equivalent.

Because \(\theta_1\) and \(\theta_2\) are parameters (or functions of parameters), the Bayesian paradigm is most appropriate, allowing for intuitive interpretation.
We define the **Bayesian probability of agreement (BPA)** in this setting as

\[BPA = \Pr(\theta_1 - \theta_2 < \delta | \text{data}) \]

which is a *posterior* probability calculated given observed data and assuming \((-\delta, \delta)\) is the region of practical equivalence defined earlier.

Here we assume that \(T_{ij} \sim F_j\) is a random variable representing the lifetime of unit \(i\) in group \(j\), \(i = 1, 2, \ldots, n_j, j = 1, 2\).

In this work we assume the lifetime distribution \(F_j\) is **Weibull**, **lognormal**, or **gamma**, though other distributional assumptions may easily be accommodated.
We further assume that \(\theta_j \) is a parameter or function of parameters that usefully describes the lifetime distribution \(F_j \), such as:

\[
\theta_j = \Pr(T_{ij} \geq t) = 1 - F_j(t) \quad \text{or} \quad \theta_j = F_j^{-1}(p)
\]

As we can see, \(\theta_1 \) and \(\theta_2 \) may themselves be functions of input(s) such as \(t, p \), or other context-dependent covariates \(x \).

Generally speaking, interest lies in comparing \(\theta_1 = h(x_1^T \beta_1) \) with \(\theta_2 = h(x_2^T \beta_2) \).

The BPA can then be calculated and visualized across a range of relevant values of the inputs, thereby quantifying the similarity of \(\theta_1 \) and \(\theta_2 \) in regions of interest.
Probability of Agreement

The BPA is straightforward to interpret: it quantifies the strength of evidence in favour of the statement $|\theta_1 - \theta_2| < \delta$

- Values close to 1 provide strong evidence in favour of this statement
- Values close to 0 provide strong evidence in favour of this statement's complement

How large the BPA needs to be in order to believe $|\theta_1 - \theta_2| < \delta$ is determined by the user.

To ensure practically useful conclusions, δ should be chosen carefully to provide a meaningful comparison in the context of the problem.
Probability of Agreement

- Given the observed data \((t_{ij}, c_{ij}, x_{ij}), i = 1,2, ..., n, j = 1,2\) and the joint posterior \(p(\theta_1, \theta_2|t, c, x)\) the BPA may be calculated as

\[
BPA = \int_{\mathcal{D}} \int p(\theta_1, \theta_2|t, c, x) d\theta_1 d\theta_2
\]

where \(\mathcal{D}\) is the region for which \(|\theta_1 - \theta_2| < \delta\). However, in general, this integral cannot be evaluated analytically.

- For ample flexibility, we approximate \(p(\theta_1, \theta_2|t, c, x)\) via MCMC simulation and estimate the BPA as follows:

\[
\bar{BPA} = \frac{1}{M} \sum_{k=1}^{M} \mathbb{I}\{|\theta_{1k} - \theta_{2k}| < \delta\}
\]
Probability of Agreement

- The posterior draws $\theta_{j1}, \theta_{j2}, \ldots, \theta_{jM}$ (for both $j = 1,2$) are obtained by taking draws from the posteriors of $\beta_{j1}, \beta_{j2}, \ldots, \beta_{jM}$ and calculating $\theta_{jk} = h(x_j^T \beta_{jk})$ for each $j = 1,2$ and $k = 1,2, \ldots, M$.

- Note that the value M is the number of posterior draws retained after a sufficient burn-in and thinning.

- We assume diffuse priors for β_j (i.e., $\beta_{0j}, \beta_{1j}, \ldots, \beta_{pj} \sim N(0,1000)$) to reflect the assumption that a practitioner may not have strong prior knowledge.

- We use simulation to investigate the effect of the choice of prior
Toaster Snubber Example

Nelson[1] describes an accelerated life test in which two different versions of a toaster are repeatedly cycled.

The different versions correspond to old and new snubbers (toaster component).

There were $n_1 = 52$ “old” toasters and $n_2 = 54$ “new” toasters involved in this comparison.
Toaster Snubber Example

Snubber Lifetimes (Old)

Snubber Lifetimes (New)
\[\theta_j = 1 - F_j(t) \]
Toaster Snubber Example

Pr(|\theta_1 - \theta_2| < \delta | data)
Toaster Snubby

\[\theta_j = F_j^{-1}(p) \]

Pr(|\theta_1 - \theta_2| < \delta|data)
Toaster Snubber Example

What did we find?

1. As the number of cycles increases, agreement steadily decreases

2. The timing and magnitude of this disagreement depends on δ

3. Agreement increases slightly for very large numbers of cycles
Spring Example

Meeker et al.\cite{9} describes an accelerated life test performed to assess the reliability of a spring under new and old processing methods.

The goal was to determine whether the new processing method would meaningfully improve the spring’s fatigue life (the number of kilocycles sustained before failure).

108 ($n_1 = 52$ “old” and $n_2 = 54$ “new”) springs were tested for up to 5000 kilocycles in a $2 \times 2 \times 3$ factorial experiment.
In addition to the processing method, two other design factors were considered and tested at different stress levels.

- Process Temperature \{500,1000\} °F
- Stroke Displacement \{50, 60, 70\} mils

9 replicates were performed at each factorial combination of these factors’ levels.

A Weibull distribution was used to model the fatigue life of the spring, with stroke and temperature included as covariates.
Stroke = 50 & Temp = 500

Stroke = 50 & Temp = 1000

Stroke = 60 & Temp = 500

Stroke = 60 & Temp = 1000

Stroke = 70 & Temp = 500

Stroke = 70 & Temp = 1000

Red: New Mean
Blue: Old Mean
Purple: New 95% CI
Dark Purple: Old 95% CI

Reliability vs. Kilocycles

0.0 0.2 0.4 0.6 0.8 1.0

0 10000 20000 30000 40000

30
What did we find?
Summary
The Bayesian probability of agreement provides an intuitive and practically useful means of comparing reliabilities in two populations. It directly quantifies the likelihood that the reliabilities (or other functions of the lifetime distributions) are practically equivalent.

Whether one decides that the reliability in two populations is sufficiently similar to combine them, and use a single reliability model, requires practical decisions made by the practitioner:

- How different is too different?
- How large a value of the BPA is large enough?
Try it Yourself!

https://nathaniel-t-stevens.shinyapps.io/BPA_Lifetime_app/
THANK YOU!
References

References

