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Additive Manufacturing: A Disruptive Technology
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Our AM Technology: Stereolithography
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Stereolithography in Action
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Review of Stereolithography and Shape Deviation
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Big Picture of Accuracy Control via Deviation Models

Huang Q., Zhang J., Sabbaghi A., Dasgupta T. (2015). Optimal offline compensation of shape shrinkage for 3D
printing processes. IIE Transactions on Quality and Reliability Engineering, 47(5): 431–444.
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Deviation Representation (Huang et al., 2015)

Nominal radius function for shape i : rnomi : [0, 2π]→ R>0.

Deviation for point θ on shape i under compensation x1:

∆i (θ, x1) = robsi (θ, x1)− rnomi (θ).
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Validation Experiment (Huang et al., 2015: p. 439)
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Accuracy Control for Cyber-Physical AM Systems

Arman Sabbaghi Deviation Modeling Across Different Processes and Shapes October 5, 2018 11 / 48



Background Objective Mean EE Deviation Features Different Processes and Shapes Conclusion

Challenge: Heterogeneous Process Conditions

X1 = x1︸ ︷︷ ︸
Observed factor

, X2 = c2︸ ︷︷ ︸
Lurking variable

−−−−−−−−→ p(y | x1)︸ ︷︷ ︸
Deviation model
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Challenge: Heterogeneous Process Conditions
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Challenge: Huge Varieties and Shape Complexities
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Challenge: Different Processes and Shapes
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Overview of Challenges and Objectives

Geometric shape deviation models constitute an important
component in dimensional accuracy control for additive
manufacturing (AM) systems.

Model building in AM systems is made difficult by their

vast spectrum of distinct process conditions,

wide varieties of complex shapes, and

low-volume production (one-of-a-kind manufacturing).

The paradigm shift introduced by AM systems motivates our
development of new Bayesian and machine learning methodologies
for comprehensive deviation modeling.
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Model Transfer via Mean Effect Equivalence in AM

X1 = x1︸ ︷︷ ︸
Observed factor

, X2 = x2︸ ︷︷ ︸
Lurking variable

≡ X1 = T︸ ︷︷ ︸
Total equivalent amount

, X2 = c2︸ ︷︷ ︸
Base setting

Sabbaghi A., Huang Q. (2018). Model transfer across additive manufacturing processes via mean effect equivalence
of lurking variables. Annals of Applied Statistics. (in press).
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Bayesian Learning From Small Samples of Distinct Shapes

Known deviation feature for previous shape: δ0.

New feature unique to new shape that is to be learned: δ1.

Deviation for new shape = δ0 + δ1

Sabbaghi A., Huang Q., Dasgupta T. (2018). Bayesian model building from small samples of disparate data for
capturing in-plane deviation in additive manufacturing. Technometrics (in press).
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Strategy: Effect Equivalence and Deviation Features

Three methods underlie our strategy for comprehensive deviation
modeling in AM systems.

1 Functional deviation representation (Huang et al., 2015)

2 Mean effect equivalence (Wang et al., 2005; Sabbaghi &
Huang, 2018)

3 Bayesian learning of modular deviation features (Huang et al.,
2014; Sabbaghi et al. 2018)

We illustrate our strategy for in-plane deviation modeling of
cylinders, polygons, and cavities under different stereolithography
processes.

Sabbaghi A., Huang Q. (2016). Predictive model building across difference process conditions and shapes in 3D
printing. Proceedings of the Twelfth Annual IEEE International Conference on Automation Science and
Engineering, August 2016.
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Definition of Mean Effect Equivalence

Let Fk denote the factors for an AM process, Xk their set of levels, and z
the covariate vector for a point on shape i .

Let p(y |z, x1, x2, ψ), p1(y |z, x1, ψ1), and p2(y |z, x2, ψ2)

denote the probability density functions for

∆i (θ, x1, x2), ∆i (θ, x1, c2), and ∆i (θ, c1, x2).

Definition

Factors F1 and F2 are equivalent with respect to the mean if for any
c1 ∈ X1 and c2 ∈ X2, functions T1→2 : X1 ×X2 → X2 and
T2→1 : X1 ×X2 → X1 exist such that for all (x1, x2) ∈ X1 ×X2:∫ ∞

−∞
yp(y |z, x1, x2, ψ)dy =

∫ ∞
−∞

yp1(y |z,T2→1(x1, x2), ψ1)dy ,

∫ ∞
−∞

yp(y |z, x1, x2, ψ)dy =

∫ ∞
−∞

yp2(y |z,T1→2(x1, x2), ψ2)dy .
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Model Transfer via Mean EE in an AM System

Deviation under x1 ∈ X1, x2 ∈ X2: ∆i (θ, x1, x2).

Model under fixed c2 ∈ X2: ∆i (θ, x1, c2) = f (θ, x1) + εθ.

Under mean EE, for every x1 ∈ X1 and x2 ∈ X2 there exists a
T2→1(x1, x2) ∈ X1 such that

∆i (θ, x1, x2) = f (θ,T2→1(x1, x2)) + εθ.

Total equivalent amount (TEA) of F2 in terms of F1: T2→1(x1, x2).
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Overview of Bayesian Learning for TEA in Mean EE

A deviation model in a new setting can be obtained by learning the
TEA with respect to the mean from the observed data.

Our general Bayesian methodology for learning the TEA with
respect to the mean in a new setting proceeds in two steps.

1 Calculate the posterior distribution of the TEA for points
under the new setting.

2 Examine the posterior distribution to formulate a model
T2→1(z, x1;γ) for the TEA in the new setting.
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Mean EE of Calibration and Compensation

∫ ∞
−∞

yp(y | z, x1, x2, ψ)dy =

∫ ∞
−∞

yp1(y | z,T2→1(x1, x2), ψ1)dy
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Posterior Distribution of TEA: Calibration
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TEA of Calibration vs Optimum Compensation
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Calibration TEA Model
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Connecting Different Shapes via Deviation Features

The cookie-cutter deviation framework (Huang et al., 2014)
connects deviation features in previously manufactured products
and new shapes in a modular fashion.

∆1(θ) = δ0(θ | α) + δ1(θ | β) + εθ

The δ0 component captures a global deviation feature shared
between two shapes with nominal radius functions rnom0 (·) and
rnom1 (·).

“Cookie-cutter” δ1 captures local deformation features unique to
the new shape rnom1 (·).
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Bayesian Learning of New Deviation Features

1 Construct the discrepancy measure

∆1(θ)− δ0(θ | α̃),

where α̃ ∼ p(α | D0), to extract information on the local
deviation feature δ1 for a new shape rnom1 (·).

2 Block and cluster the discrepancy measure distributions
according to covariates and discrepancy measure trends that
explain the local deviation feature.

3 Specify a hierarchical model for the parameters β of the
trends across the blocks.
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Learning the Deviation Feature for Straight Edges
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Observed Deviation for 3′′ Pentagon
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Discrepancy Measure for Edge 1 of the 3′′ Pentagon

2.5 2.6 2.7 2.8 2.9 3.0

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Discrepancy Measure Distribution for Edge 1

r1(θ)

D
is

cr
ep

an
cy

 M
ea

su
re

 (
in

.)
π/2 − π/5 < θ < π/2

π/2 − 2π/5 < θ < π/2 − π/5

Arman Sabbaghi Deviation Modeling Across Different Processes and Shapes October 5, 2018 32 / 48



Background Objective Mean EE Deviation Features Different Processes and Shapes Conclusion

Clustering Trends for the 3′′ Pentagon
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Local Deviation Feature Specification for Regular Polygons

δ1(θ | β) = β0,e(θ) + β1,e(θ)s(θ)
{
rnom1 (θ)− r0cos

(π
n

)}b1,e(θ)

+ β2,e(θ) {1− s(θ)}
{
rnom1 (θ)− r0cos

(π
n

)}b2,e(θ)
,

where

s(θ) =


1 if

(
θ − π

2

)
mod2π

n −
π
n > 0,

0 if
(
θ − π

2

)
mod2π

n −
π
n ≤ 0,

and e(θ) denotes the edge for θ.

We specify a hierarchical prior on β, and fit the full model
involving both δ0 and δ1 simultaneously to the 3′′ pentagon and
the previously manufactured cylinders.
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Deviation Model Fit for the Pentagon
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Local Deviation Feature Specification for Polygons

δ1(θ | β) = β0,e(θ) + β1,e(θ)s(θ){rnom1 (θ)− rnom1 (m(θ))}b1,e(θ)

+ β2,e(θ) {1− s(θ)} {rnom1 (θ)− rnom1 (m(θ))}b2,e(θ),

where
m(θ) = argmin

t∈[0,2π]:
e(t)=e(θ)

rnom1 (t),

s(θ) = I {θ > m(θ)} ,

and e(θ) denotes the edge for θ.

As before, we specify a hierarchical prior on β, and fit the full
model involving both δ0 and δ1 simultaneously to polygons and the
previously manufactured cylinders.
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Deviation Model Fit for the Irregular Polygon
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Deviation Modeling for Different Processes and Shapes

1 Infer and model the TEA for a specific shape rnom0 (·) under a
new process condition in terms of compensation.

2 Infer and model the local deviation feature for a new shape
rnom1 (·) manufactured under the new condition.
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Case Study: Inner Hexagon in Cylinder
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Deviation Data and Model for Cylinders
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Deviation Data for Circular Cavities
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Deviation Data for Hexagonal Cavity
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Step One: Learn the TEA for Circular Cavities
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Step One: Deviation Model for Circular Cavities
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Step Two: Learn Deviation Feature for Inner Hexagon
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Step Two: Deviation Model for Inner Hexagon
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Concluding Remarks and Discussion

Our new Bayesian and machine learning methodologies effectively
utilize small samples of data to build deviation models for a broad
class of disparate shapes across distinct processes in AM systems.

These methodologies are sufficiently general so as to be applied to
different types of AM systems.

Next steps:

Cloud-based app for automated calibration and recalibration
of AM systems.

Prescriptive modeling for different shapes.
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