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Motivation

Figure: Piura, Peru (source:
https://commons.wikimedia.org/w/index.php?curid=9395222)

FTC 2018 Calibration of IRI measurements 2 / 43



Motivation

Figure: source: NASA MODIS satellite images from Worldview, NOAA
Climate.gov

Piura experienced up to 10 times more rain than normal, leading to
flooding and landslides in the usually semi-arid coastal landscape.
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Motivation

Figure: Sea surface temperature difference from average, Feb. 2017. Source:
NOAA Climate.gov
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Motivation

Figure: The 2017 El Nino Costero flooding in Peru

The 2017 El Nino Costero flooding in Peru was highly destructive. It
lasted three months, affected over 1.5 million people, caused 162 deaths,
and damaged thousands of homes (Venkateswaran et al., 2017).

FTC 2018 Calibration of IRI measurements 5 / 43



Motivation

- How to measure the the road surface roughness condition objectively?

- How to monitor the road surface condition on time?
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Motivation

The International Roughness Index (IRI) is a standard worldwide indicator
for measuring the road roughness condition which is the support for the
evaluation and management of the road performance.

High precision instruments are expensive and have less availability.

Smartphones are potentially use-
ful to be adopted as a cost-
effective and easy to implement
tool.
The mobile apps estimate the IRI
through regression equations.
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Project goal

Determine the road roughness condition objectively using mobile
applications that estimate the IRI taking into consideration Peruvian
reality through a regression model that will allow us to calibrate the
observed measurements to the standard ones.
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Basics
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What is IRI?

Road roughness is understood as the variation in surface elevation along a
road that causes vibrations in traversing vehicles.

The standard summary statistic that quantifies this variation is the
International Roughness Index (IRI).

It was proposed in 1982 by a group of experts (from Brazil, England,
France, USA y Belgium) from the World Bank. They define the IRI as,
(Sayers et al., 1986)

“a ratio of the accumulated suspension motion of a vehicle (in,
mm, etc.), divided by the distance traveled by the vehicle during
the test (mi, km, etc.).“
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IRI scale

Figure: IRI scale (Sayers and Karamihas, 1998)
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Instruments

Class 1: high precision.

Figure: Mounted profiler Figure: Walking profiler
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Instruments

Class 2.

Figure: Profilograph Figure: Rod and Level

These can become class 1 instruments if the measurements are taken every
250 mm (9.84 in).
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Instruments

Class 3.

Figure: “Merlin“ Figure: Accelerometers
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Summary of measurement instruments

Table: Roughness data collection equipment

Device Initial cost Data collection cost Availability
Class 1 Profilers High Low Medium

Rod and level Low Impractical Easy
Class 2 Profilographs Low Impractical Medium
Class 3 Merlin Low Impractical Easy

Accelerometers Low Low Easy
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Background
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Background

Road roughness condition is a linear function of magnitude of acceleration
and average speed, and a linear function of the accelerometer, gyroscope
and the average speed (Douangphachanh and Oneyama, 2014a),
(Douangphachanh and Oneyama, 2014b).

Islam et al. (2014) find that the IRI measurements from the mobile
applications are sensible to data collection rates, vehicle speed, and type of
vehicle produced.

Changes in device type, vehicle type, and mounting arrangement
significantly impacted IRI variance, while vehicle speed (50 km/h and 80
km/h) did not (Hanson et al., 2014).

Higher IRI accuracies can be achieved in low traffic conditions, where
constant speeds can be maintained (Cruz and Castro, 2015).
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Opportunity for improvement

None of these studies has performed a formal DOE.

Randomization is not mentioned.

At most, they have conducted a one factor at a time experiment.
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Methodology
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IRI calculation by its definition

Figure: Cuarter car model
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Cuarter car model

The equations of motion for the
quarter-car model are derived from
Newton’s second law, force = mass
x acceleration (Sayers, 1989).

msz̈s + cs(żs − żu) + ks(zs − zu) = 0

muz̈u + cs(żu − żs) + ks(zu − zs) =
kt(zp − zu)
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Cuarter car model

The actual IRI is an accumulation
of the simulated motion between the
sprung and unsprung masses in the
quarter-car model, normalized by the
length L, of the profile (Sayers, 1995):

IRI = 1
L

∫ T
0 |żu − żs|dt
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Cuarter car model

We can solve the quarter-car model differential equations using different
approaches. We could use numerical approximation (through Taylor
expansion), or by simulations.

The input to the IRI calculation is the
longitudinal profile of the road.
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Longitudinal profile

Figure: Longitudinal profiles (Sayers and Karamihas, 1998)
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Profile measurement

The IRI definition describes a method for computing a roughness index for
a single longitudinal profile of arbitrary length (Sayers, 1995).

The quality of the profile measurement depends on

• The quality of the equipment, and

• The methodology used to make the measurement.
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Some of the roads selected in pilot
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Calculating the IRI

Table: IRI for each sample

Sample IRI
Section 1 4.243
Section 2 4.447
Section 3
Section 4 6.173
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The linear calibration problem

Forward regression - inverse regression

We assume a linear regression as appropiate for the forward regression
where the IRI measurements from the Rod and Level as the regressor, and
those from the App as the response:

yi = β0 + β1xi + εi

where εi’s are iid as N(0, σ2).
Note that an important assumption is that the xi’s are measured with
negligible error.

The problem is to make inferences about x based on y.
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The linear calibration problem

Let ynew be the future IRI measurement from the App, then the estimated
xpred is:

x̂pred =
ynew − β̂0

β̂1

To find a prediction interval for xpred, note that this involves the ratio of
two dependent normal random variables. Parker et al. (2010) use Delta
Method to obtain and asymptotic approximation for the variance.

FTC 2018 Calibration of IRI measurements 30 / 43



Forward regression - inverse regression

A (1− α)100% prediction interval for xpred, (Parker et al., 2010),

x̂pred ± t1−α
2
,n−2

σ̂

β̂1

√
1 +

1

n
+

(x̂pred − x̄)2

Sxx

Comparison with reverse regression

xi = δ0 + δ1yi + ε∗i

Note that this violates the assumption that the regressor is measured with
negligible error.

Parker et al. (2010) show that both (inverse and reverse approaches) give
biased predictions, and that both increases as σ increases. The inverse
approach has less bias as x is predicted away from 0 (assuming centering
and scaling). The bias in the inverse regression decreases as n increases.
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IRI measurements

Figure: Centered and scaled IRI measurements from App vs. Rod and Level when
using small vehicle at 45 km/h (28 mph)
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Experiment

Two-level factors: Characteristics of the sections (HTC), Type of vehicle
(HTC), wheel pressure (HTC), number of people in the vehicle, speed of
the vehicle, position of the cellphone, direction if the road has slope.

Since sections are hard-to-change (HTC), and for each section we also
have other 2 HTC factors, we use a Split-split-plot design.
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Split-split-plot design

Figure: IRI estimation split-split-plot design

Section characteristics → vehicle and pressure (22) → speed, direction and people (23)
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Preliminary results
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First order split-plot analysis

Fitting a first-order model with interactions:

y = WP factors + WP error + SP factors + WPxSP interactions + SP error

IRIapp = β0 + β1Z1 + β2Z2 + β12Z1Z2 + σ2γ + β3X3 + β4X4 + β34X34+

β13Z1X3 + β14Z1X4 + β23Z2X3 + β24Z2X4 + σ2ε
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Whole plot analysis

Figure: Whole plot analysis
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Split plot analysis

Figure: Split plot analysis for IRI measurements from App
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Split plot analysis

Table: Split plot analysis for IRI measurements from App

Source DF SS MS F P
Blocks 2 5.30992 2.65496 18.13 0.003

Vehicle[HTC] 1 0.94094 0.94094 6.42 0.044
Pressure[HTC] 1 0.00056 0.00056 0.00 0.953

Vehicle[HTC]*Pressure[HTC] 1 0.00918 0.00918 0.06 0.811
WP Error 6 0.87871 0.14645 19.74 0.000

Speed 1 0.00335 0.00335 0.45 0.504
Direction 1 0.01830 0.01830 2.47 0.121

Vehicle[HTC]*Speed 1 0.02407 0.02407 3.24 0.076
Vehicle[HTC]*Direction 1 0.00010 0.00010 0.01 0.910
Pressure[HTC]*Speed 1 0.01290 0.01290 1.74 0.191

Pressure[HTC]*Direction 1 0.00047 0.00047 0.06 0.802
Speed*Direction 1 0.03565 0.03565 4.81 0.032

Vehicle[HTC]*Pressure[HTC]*Speed 1 0.00037 0.00037 0.05 0.824
Vehicle[HTC]*Pressure[HTC]*Direction 1 0.00452 0.00452 0.61 0.438

Vehicle[HTC]*Speed*Direction 1 0.00139 0.00139 0.19 0.667
Pressure[HTC]*Speed*Direction 1 0.00446 0.00446 0.60 0.441

SP Error 73 0.54164 0.00742
Total 95
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Split plot analysis

Figure: Split plot analysis residuals
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Summary and conclusions
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Summary and conclusions

We observe some linear relationship between the IRI measurements from
the App and from the Rod and level, but we notice the measurements
from the App are highly sensible to the different levels of the factors.

The mobile application is sensible to the car suspension system, and hence
to many factors such pressure of wheels, mass of the vehicle, speed, etc.

There are some interactions between factors that seem to be important
and need to be taken into account such as speed and up/down direction,
and possibly vehicle and speed.

There are other factors that also affect the IRI measurements that need to
be fixed such as location of the smartphone and number of people in the
car.
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