

Prioritization of Stockpile Maintenance with Layered Pareto Fronts

Sarah Burke Fall Technical Conference 5 October 2018

Co-authors

Christine Anderson-Cook LANL

Lu Lu University of South Florida

Doug Montgomery Arizona State University

Motivations

- How to make an informed, data-driven decision when decision-makers have competing interests?
- General problem description:
 - Use multiple criteria to identify the top N solutions to accomplish a goal while enabling a richer and more realistic decision
 - Given: Enumerated list of objects evaluated on multiple criteria
 - Goal: Select N objects from the list
 - How do you choose "the best" N while balancing competing objectives?

Stockpile Prioritization Problem

- 42 stockpiles across 4 groups, all could use extra funding
- Primary question of interest: Which stockpiles should received additional funding?
- The challenges:
 - Limited funds available: only 4 stockpiles can receive \$\$
 - How should **most critical** be measured? What data needs to be collected?
 - Competing objectives of stockpile managers → disagreement on how to prioritize criteria
 Group Number of
- Cost of maintenance/surveillance similar across the different stockpiles
- 5-member decision-making team
 - The 4 stockpile group managers
 - Sponsor

stockpiles

15

11

11

5

Α

B

С

D

Stockpile Prioritization Problem

- Budget allocation problem among stockpile programs to enhance stockpile performance
- Historic decision-making process
 - Managers of 4 stockpile groups argued with stakeholder
 - Decision often driven by presentation effectiveness and not data
- Goal: Improve the decision process to better allocate the stockpiles in most need

Structured Decision Making Using DMRCS

Stage	
-------	--

Objective

Subjective

Steps

- Define Identify choices under consideration Identify aspects of the decision which are most important
- Measure Identify quantitative metrics to characterize aspects Gather relevant data for each metric for all choices
 - Reduce
 Eliminate some criteria from further consideration
 Eliminate non-contending choices
- Combine
- Evaluate tradeoffs between choices Incorporate subjective weighting of criteria for all team members
- Select
- Identify top solutions Explore performance of top choices relative to competitors Finalize choices and how process can be defended

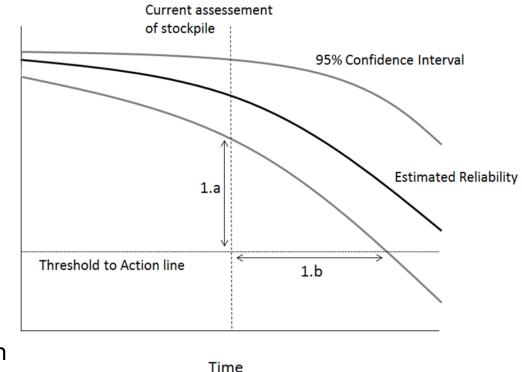
Define

- 42 stockpiles are under consideration
- Brainstorm which criteria should be used:
 - What would lead to a good decision?
 - Brainstorming allows consideration of many different facets of the stockpiles
- Metrics Discussed
 - Various reliability metrics
 - Current supply relative to projected need
 - Availability of suitable alternatives
 - Impact on missions

Excluded: Too hard to collect objective data or not as essential

- Number of historical failure problems
- SME knowledge on problems
 with usage
- Quality of reliability testing procedures

Measure


- Determine how each criterion will be defined and measured
- Want quantitative metrics for fair assessments
- SMEs defined what characteristics to define with each of the measures
- Reduced aspects of interest into three broad categories:
 - Overall Reliability
 - Overall Urgency
 - Consequence

Measure

- Overall Reliability
 - Current reliability (1.a)
 - Time to threshold (1.b) ²opulation Reliability
- Overall Urgency
 - Available supply
 - Availability of alternatives
- Consequence
 - How important is munition to mission?
 - Shortage assessment

Measure

- Scoring method based on historical precedent
- Based on comparing **available** data for each stockpile
- Assessed via **standardized** definitions, defined by SMEs (independent from decision-making team)
- Each stockpile was assessed by several experts to obtain final score for each metric
- Objectivity in assessing scores is key \rightarrow eliminates potential bias
- Rigorous and defensible method
 - Incorporates expert knowledge based on all aspects of stockpile design, maintenance, and surveillance
 - Labor-intensive, but transparent and consistent

Decisions are now based on quantitative & objective measures agreed upon by team

Measure: Subset of Stockpile Criteria Scores

Stockpile	C	urrent	Time to	Overall	Available	Availability of	Overall	Consequence
	Re	liability	Threshold	Reliability	Supply	Alternate	Urgency	
A1		8.5	9.5	9	7	5	6	2.5
A2		7.5	5.5	6.5	7.5	10	8.75	5.5
A3		9.5	9.5	9.5	9	8.5	8.75	9
A4		9.5	8.5	9	8.5	9	8.75	9
B 1		6.5	8	7.25	8.5	6	7.25	7
B2								
B3		Overall Reliability Min = 5.75 Max = 9.5						
B4		Overall Urgency Min = 6 Max = 9.5						9
C1							x = 9.5	4.5
C2		- Consequence with - 2.5 wax - 3.5						
C3		9.5	6	7.75	7	9	8	9
C4		6.5	5	5.75	8	5.5	6.75	2.5
D1		7.5	7	7.25	8	5.5	6.75	2.5
D2		7	8	7.5	6.5	6	6.25	9
D3		10	8	9	8	6.5	7.25	4
D4		9	7	8	7	9	8	9
D5		6.5	6	6.25	9.5	9.5	9.5	8

Reduce

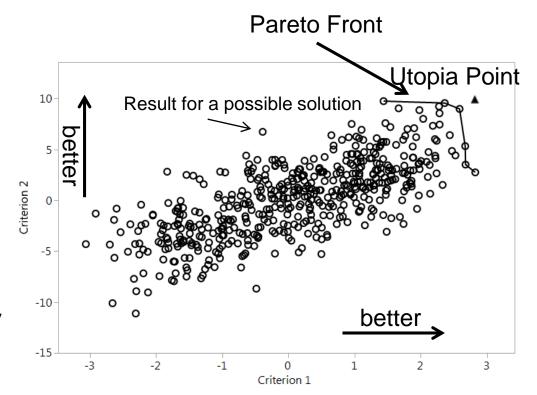

- Reduce metrics (done previously)
- Reduce non-contending solutions from further consideration to make decision more manageable
- Can we objectively remove some stockpiles with values not critical enough before subjective choices are made?
 - Use layered Pareto Fronts
 - TopN-PFS Add-In for JMP

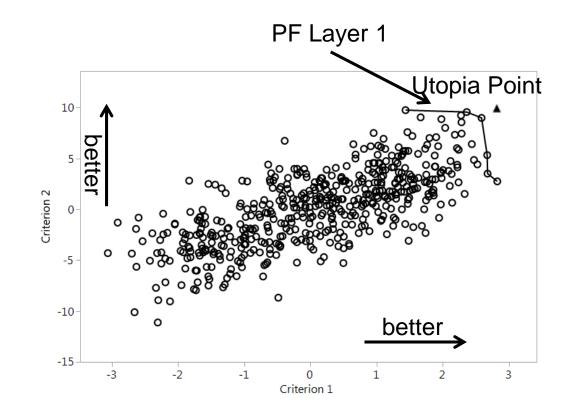
(https://community.jmp.com/t5/JMP-Add-Ins/Top-N-Pareto-Front-Search-for-Structured-Decision-Making/ta-p/36527)

Pareto Front

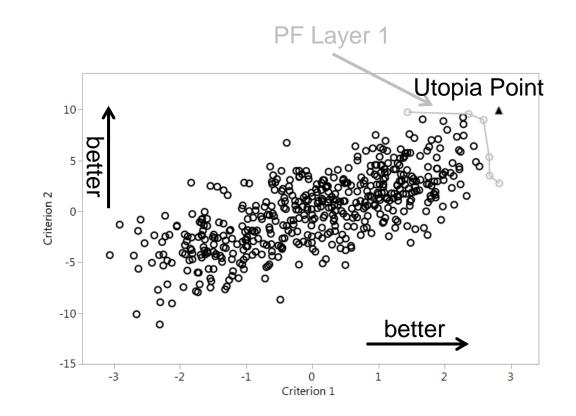
- The set of non-inferior points in a dataset
- Goal: Eliminate dominated, inferior points from further consideration
- Balance multiple criteria simultaneously

Pareto Front

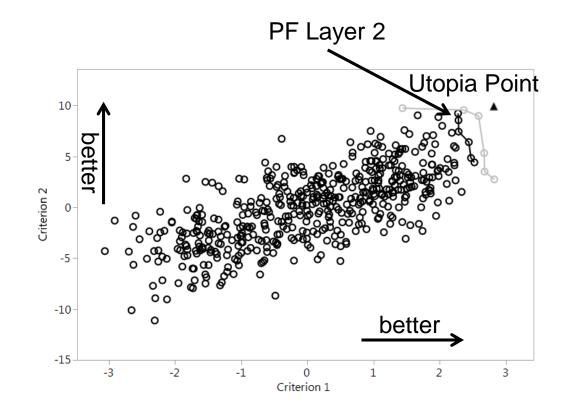

- The set of non-inferior points in a dataset
- Goal: Eliminate dominated, inferior points from further consideration
- Balance multiple criteria simultaneously
- Note: Ideally would like to be at the Utopia point


Pareto Front

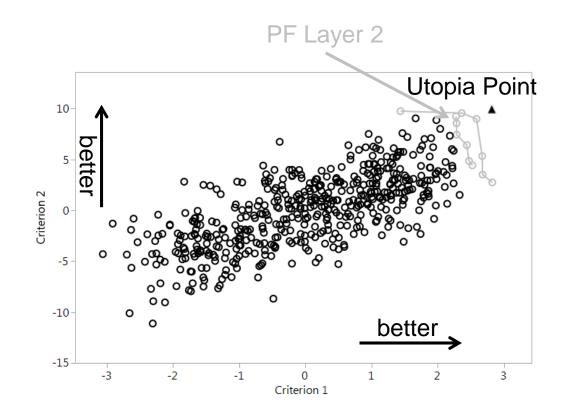
- The set of non-inferior points in a dataset
- Goal: Eliminate dominated, inferior points from further consideration
- Balance multiple criteria simultaneously
- Note: Ideally would like to be at the Utopia point



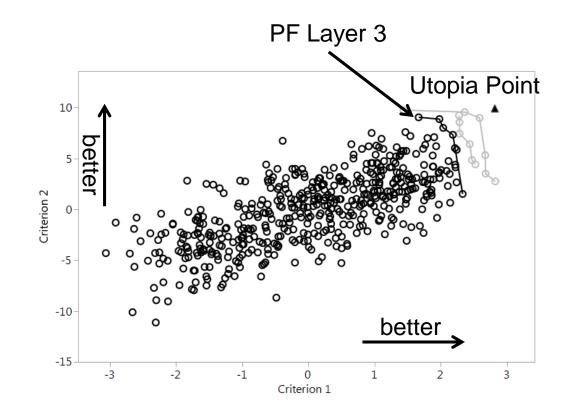
• Find points on the Pareto Front



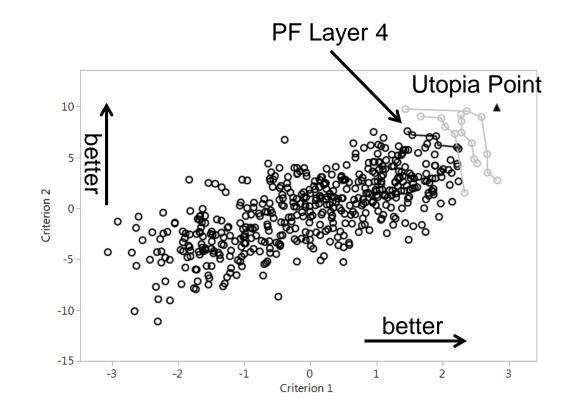
- Find points on the Pareto Front
- Remove these from obtainable criterion region



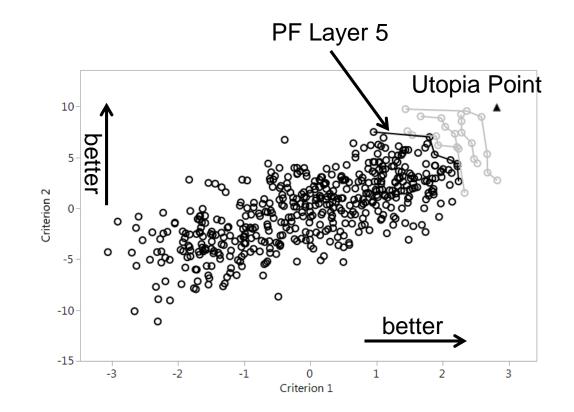
- Find points on the Pareto Front
- Remove these from obtainable criterion region
- Find a new Pareto Front based on the remaining points



- Find points on the Pareto Front
- Remove these from obtainable criterion region
- Find a new Pareto Front based on the remaining points
- Remove these from obtainable criterion region

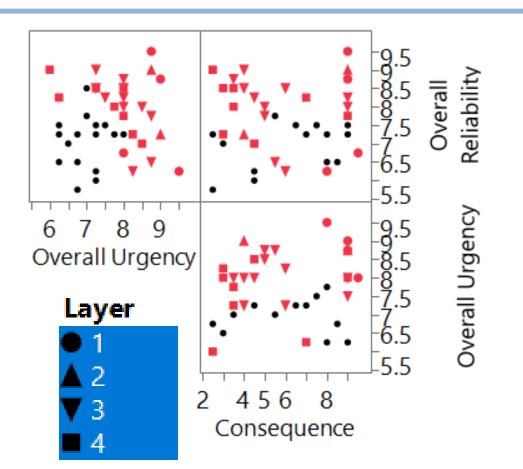


- Find points on the Pareto Front
- Remove these from obtainable criterion region
- Find a new Pareto Front based on the remaining points
- Remove these from obtainable criterion region
- Continue until have m layered Pareto Fronts



- Find points on the Pareto Front
- Remove these from obtainable criterion region
- Find a new Pareto Front based on the remaining points
- Remove these from obtainable criterion region
- Continue until have m layered Pareto Fronts

- Find points on the Pareto Front
- Remove these from obtainable criterion region
- Find a new Pareto Front based on the remaining points
- Remove these from obtainable criterion region
- Continue until have m layered Pareto Fronts


- Find points on the Pareto Front
- Remove these from obtainable criterion region
- Find a new Pareto Front based on the remaining points
- Remove these from obtainable criterion region
- Continue until have m layered Pareto Fronts

Reduce: Stockpile

- 26/42 stockpiles in 4 PF layers
- Objectively eliminate 16 (approx. 1/3) stockpiles from further consideration
- Why PF layers?
 - Consider stockpile A4: (OR,OU,C) = (9,8.75,9)
 - A4 not in first PF layer;
 dominated by A3
 (OR,OU,C) = (9.5,8.75,9)
 - But still fairly critical

- Evaluate tradeoffs among contenders using desirability functions
- Make diverse criteria (potentially measured on different scales) comparable

Add
$$DF_j = \sum_{i=1}^{k} w_i d_{ij}$$

Multi $DF_j = \prod_{i=1}^{k} d_{ij}^{w_i}$
 $\sum w_i = 1; w_i \ge 0$

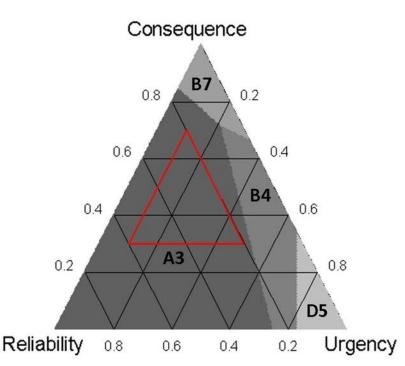
- d_{ij} are desirability scores; map original values to [0,1] scale
- Weights are subjective & may change top N rankings

-Must reflect decision-makers' priorities (which likely differ)

Derringer, G., & Suich, R. (1980). "Simultaneous optimization of several response variables." *Journal of Quality Technology, 12*, 214-219.

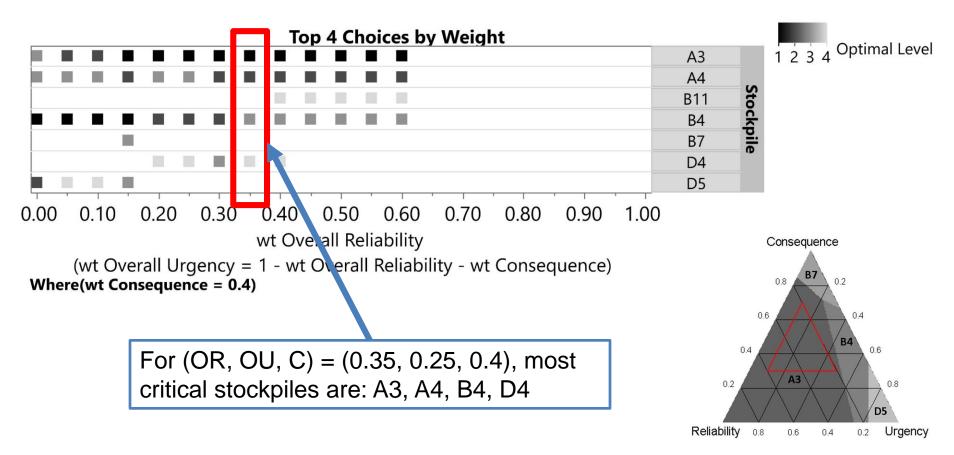
- Several choices team must make:
 - How to scale original criteria values?
 - Which desirability function?
 - What values of weights for each criterion?
- TopN-PFS Add-In provides several options to meet decision-makers' needs
- Scaling:
 - 1. Use the natural range of each metric; map 10 (most critical) to $d_{ij} = 1$ and 0 (least critical) to 0
 - 2. Use the range of the observed data; e.g., for Overall Reliability, 5.75 \rightarrow 0, and 9.5 \rightarrow 1
 - 3. Use the range of data on the top N PFs layers; e.g., for Overall Reliability, 6.25 \rightarrow 0, and 9.5 \rightarrow 1

Scaling choice does not affect solutions on PFs

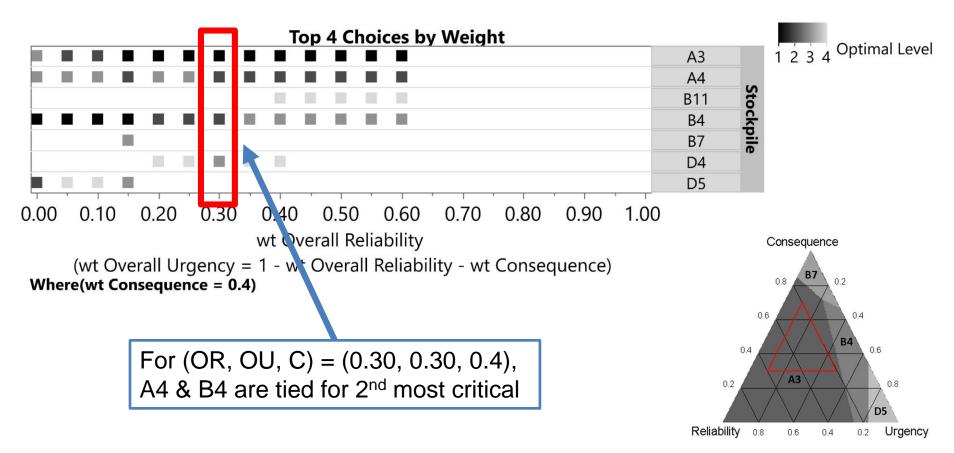


- Several choices team must make:
 - How to scale original criteria values?
 - Which desirability function?
 - What values of weights for each criterion?
- TopN-PFS Add-In provides several options to meet decision-makers' needs
- Desirability Function:
 - Multiplicative DF more severely penalizes low criterion values than the additive DF
 - Additive DF is more forgiving for poor performance of one criterion

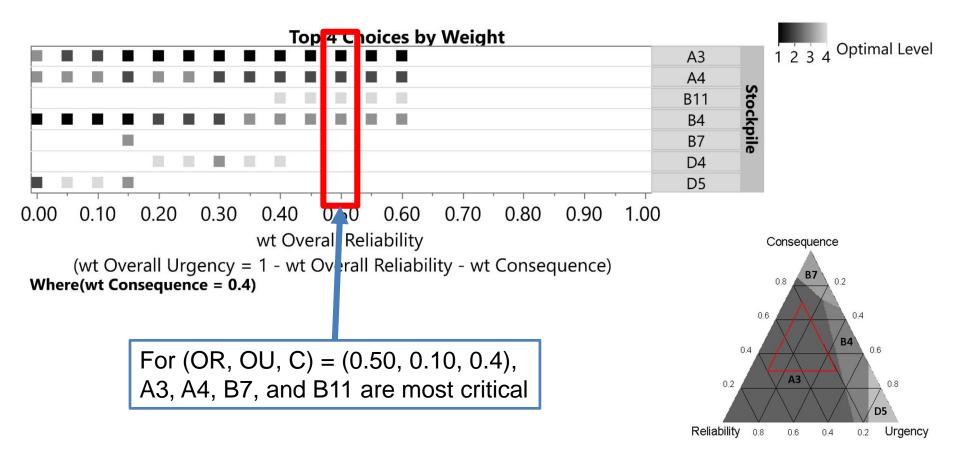
Did not want to eliminate potentially critical stockpile Evaluated impact of DF choice



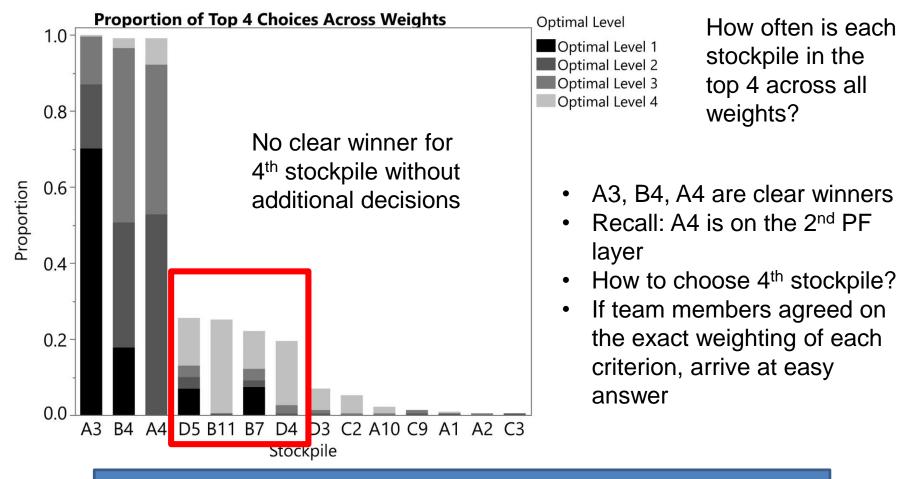
- Several choices team must make:
 - How to scale original criteria values?
 - Which desirability function?
 - What values of weights for each criterion?
- TopN-PFS Add-In provides several options to meet decision-makers' needs
- Weights
 - First consider which are most critical choices across all weights
 - 4 stockpiles identified as most critical across all weights
 - Both stockpiles with top individual scores and those with balanced high scores are identified as critical



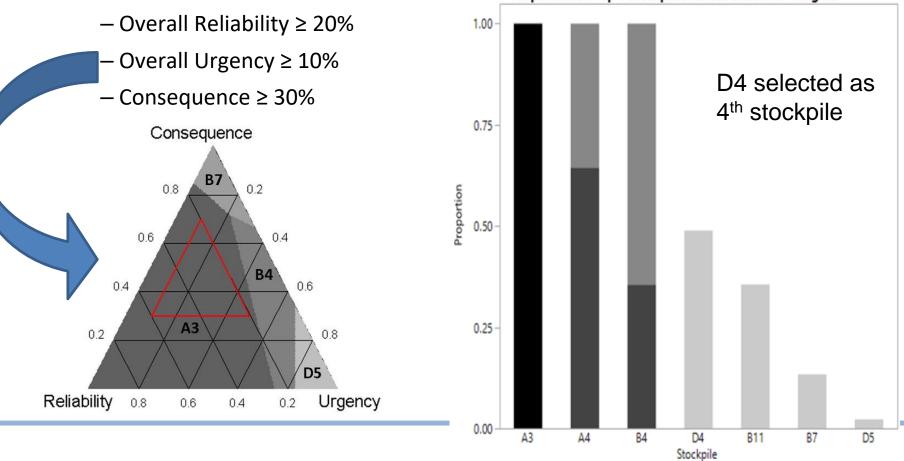
Goal: Identify top 4 critical stockpiles



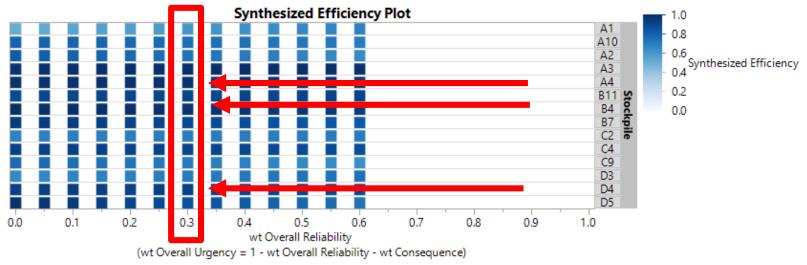
Goal: Identify top 4 critical stockpiles



Goal: Identify top 4 critical stockpiles

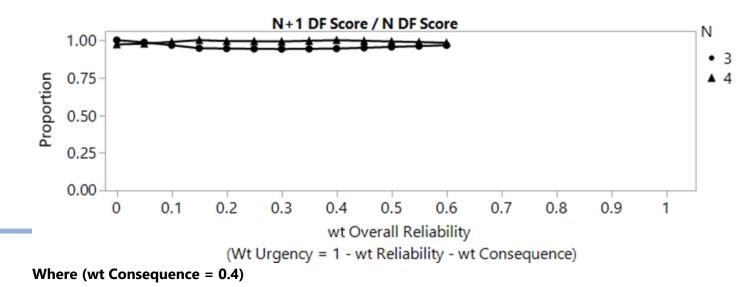


Only 14 stockpiles ever in the top 4 for scaling & DF selections. Combining criteria into overall score has further reduced choices


Select – Narrow Weight Region

 Team members narrowed down to universally agreeable region of weights
 Proportion of Top 4 Stockpiles Across Subset of Weights

Synthesized Efficiency Plot – how do solutions compare to best possible solution at given weight combo?



Where(wt Consequence = 0.4)

- A3 is most critical, so darkest shade of blue
- A3 has dark blue across all weight region shown: near optimal performance regardless of weight
- A4, B4, and D4 also dark blue -> DF score close to most critical (A3)

- There is evidence that >4 stockpiles would greatly benefit from funding
- N+1 comparison plot shows ratio of DF scores for (N+1)th solution vs Nth best solution
- High value means (N+1)th solution is close to Nth best
- For N = 4, there is very little difference between 4th most critical and 5th most critical stockpile across weights
- Evidence for sponsor to find additional funding??

Final Decision

- A3, B4, A4, and D4 were selected as recipients of the additional funding
- All team members agreed that the right decision had been made (although manager C did not receive any additional funding)
- Subjective choices made can be assessed using the JMP Add-In
 - Can quickly recreate the analysis with a different desirability function and/or scaling approach
 - The final stockpile selections in this example were robust to the choices of DF and scaling

JMP Add-In

			🐋 TopN-PFS Help Page - JMP	- □ >		
🛃 Top N Pareto Front Search - JMP	-	- 🗆 X	About the Top N Pareto Front	Search algorithm		
Select Columns Stockpile Stockpile Number Overall Reliability Overall Urgency Consequence	Cast Selected Columns Into Roles Criteria required numeric optional numeric	Action OK Cancel Remove	When identifying an "optimal" choice must often balance multiple, and pote addition to this problem, in many situa	Authors: Sarah Burke, Christine Anderson-Cook, Lu Lu When identifying an "optimal" choice among many alternatives, we must often balance multiple, and potentially competing objectives. In addition to this problem, in many situations, we often do not want to find just one optimal solution, but multiple solutions. Two scenarios where this could happen are:		
	ID required	. Help	 We have a goal or task that requires We have both quantitative and qualitative the number of options from which to number analytically using the quantitation final decision using the secondary, qualitation 	tative objectives. We can reduce o choose to a more manageable tative objectives and then make a		
	Phase 1 Settings (Required) Enter number of layers Check boxes to maximize. Uncheck boxes to minimize. Overall Reliability Overall Urgency Consequence Phase 2 Settings (Optional)		If you want to identify more than one of you can use a two-phase Layered Pare phase, we reduce the number of optio more manageable number using Paret phase, we use desirability functions [2] combinations of weights on the criteria To use this tool, you must begin with a enumerated values for multiple criteria	to Front approach [1]. In the first ons from which to choose to a to Front layers. In the second] to rank the choices for different a. a data table listing the		
	Select Desirability Function(s) (Required)		⊿ Example			
	 Additive Desirability Function Multiplicative Desirability Function Select Plots (Optional) Mixture Plot Parallel Plot Proportion Plot Synthesized Efficiency Plot Additional Options Enter value k to round desirability score to k decimal places Select how to perform criteria scaling Best A 		Suppose you are a stockpile manager and need to ide critical subpopulations in the stockpile in order to dec for their maintenance. You have three criteria that have evaluated: reliability, urgency, and severity of consequ- this illustration, we only consider reliability and urgence b Launch Window Settings Window Phase 1 Output Data Tables Scatterplot Matrix			
	an arm/tE/INAD Add Inc/Ton I	N Doroto Front C	arch for Structured Decision			

Julea-Decision -Auu-1115/10 Making/ta-p/36527

X

Summary

- Using a structured decision process (DMRCS) allowed for a defensible and rigorous process
- Facilitate decision making for a complex process with many criteria
- Better buy-in on final decision because of participation in Define-Measure steps
- Longer decision process, but more informed
 & data-driven decision is made

Questions?

STAT RETURN I SCIENTIFIC METHOD COE