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Synopsis 
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Reliability experiments determine which factors drive system/product 
reliability.

Reliability data tend to follow distinctly non-normal distributions and include 
censored observations.

Our experimental designs should accommodate the skewed nature of the 
response and allow for censored observations.

Monte Carlo simulations are frequently used to evaluate the design properties 
(e.g., power) for reliability experiments. 

Simulation can be inefficient to compare multiple experiments of various sizes.

We have developed a closed form approximation to calculate the power of a 
reliability experiment.



Illustrative Example
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Planning a reliability experiment for N = 240 “products.”

A 2 x 2 x 3 full factorial experiment (design)

Expose until failure or up to 10 days (right censoring time)

Identify seven days as the crucial juncture in the product’s lifetime; we anticipate 80% of the 
products will fail by this time (nominal failure rate).  

Detect 10% change in probability of failure due to an exposure factor (effect size).

Lower probability of failure 𝑝1 = .75 and upper probability of failure 𝑝2 = .85

Failure times follow a lognormal distribution with fixed scale parameter, 𝝈 = 𝟐

Effect sizes, in terms of the location parameters 𝜇1and 𝜇2 are found by: 

𝑝1 = 𝐹 𝑡𝑝, 𝜇𝑝1 and 𝑝2 = 𝐹(𝑡𝑝, 𝜇𝑝2
): 

𝜇1 = .6 and 𝜇2 = −.13

How do we evaluate our design? 
How do we calculate the power of test for our nine model coefficients?



Discussion of power is common in classical experimental 

design evaluation

6

Discussions of power are not prevalent in reliability research. 

Meeker (1977; 1992; 1992; 1994; 1995; 1998; 2006).

• Precision around a Quantile Estimate or Hazard Functions

• Good for quality control applications…



So why not just use Monte Carlo? 

It is a flexible and accurate approach.

It could quickly become computationally inefficient.

A closed form approximation is computationally efficient. 



The Failure-Time Regression Model
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𝑦𝑖 = log 𝑇𝑖 = 𝑚𝑖
𝑇𝛽 + 𝜎𝜖𝑖

𝑖 = 1,2,…𝑘 design points

Model the location 𝜇𝑖 = 𝑚𝑖
𝑇𝛽 ; fix the scale 𝜎

Lognormal Model: T𝑖~𝐿𝑜𝑔𝑁(𝜇𝑖 , 𝜎) and 𝜖𝑖~𝑁(0,1)

Weibull Model: T𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜇𝑖 , 𝜎) and 𝜖𝑖~𝑆𝐸𝑉(0,1)

Censoring: Fixed, Type I Right Censoring Scheme 

𝛿𝑖𝑗 = 1 𝑖𝑓 𝑇𝑖𝑗 < 𝑡𝑐 ; 𝛿𝑖𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Maximum likelihood estimation

𝑙𝑛𝜎 =෍

𝑖=1

𝑘

෍

𝑗=1

𝑛𝑖

log 𝑓𝑇𝑖𝑗,𝜇𝑖 𝛿𝑖𝑗 + log[1 − 𝐹𝑡𝑐,𝜇𝑖](1 − 𝛿𝑖𝑗)



Testing for Significance: Likelihood Ratio Test
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𝛽 = 𝜓, 𝜆 and 𝑀 = [𝑋, 𝑍]

𝜇𝑖 = 𝑥𝑖
𝑇𝜓 + 𝑧𝑖

𝑇𝜆

𝐻0: 𝜓 = 𝜓0

𝐻𝐴: 𝜓 ≠ 𝜓0

Likelihood Ratio Statistic:  2[𝑙𝑛𝜎 ෠𝜓, መ𝜆 − 𝑙𝑛𝜎(𝜓0, መ𝜆0)]

Coefficients under test Nuisance coefficients



The power of a test is: 
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𝑃𝑟 𝑡 > Χ𝛼
2 = 1 − ෨𝑋2(Χ𝛼,

2 𝑝, 𝛾)

t is the non-central chi-square random variable.

Χ𝛼
2 is the upper 𝛼 percentage point of the central chi-square 

distribution

෨𝑋2 is the non-central chi-square distribution with p degrees of 

freedom (number of coefficients under test) and non-centrality 

parameter 𝛾

Central 𝜒2 and non-central ෨𝑋2

power

𝜒𝛼
2



Self, Mauritsen, and O'Hara (1992)

Describe a power approximation approach for the generalized 

linear model (glm) framework.

Based on a non-central chi-square approximation to the distribution of the 
likelihood ratio statistic. 

𝐿𝑅𝑆 ~ ෨Χ𝑝,𝜸
2

Technique accommodates any model within the exponential family of 
distributions that can be arranged into the glm canonical form:

f yi = exp
yi𝜃𝑖 − 𝑏 𝜃𝑖

𝑎𝑖 𝜙
+ 𝑐 𝑦𝑖 , 𝜙

Examples: logistic, Poisson, and gamma regression models. 



Failure-time regression models share many qualities of 

the generalized linear model, but they cannot be 

arranged into the canonical form.



If we can solve for the non-centrality parameter 𝛾, then 

we can estimate power.

We know the expected value of a noncentral chi-square 
random variable is 𝑝 + 𝛾.

If we equate the expected value of the LRS to the expected 
value of the noncentral chi-square random variable, we can 
solve for 𝛾.
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Great Expectations [and Expansions]

𝐸𝜓,𝜆{2[𝑙𝑛𝜎 ෠𝜓, መ𝜆 − 𝑙𝑛𝜎 𝜓0, መ𝜆0 ]} = 

𝐸𝜓,𝜆{2[𝑙𝑛𝜎 ෠𝜓, መ𝜆 − 𝑙𝑛𝜎 𝜓, 𝜆 ]} 

- 𝐸𝜓,𝜆{2[𝑙𝑛𝜎 𝜓0, መ𝜆0 − 𝑙𝑛𝜎 𝜓0, 𝜆0
∗ ]}

+ 𝐸𝜓,𝜆{2[𝑙𝑛𝜎 𝜓, 𝜆 − 𝑙𝑛𝜎 𝜓0, 𝜆0
∗ ]} 

𝑝 + 𝛾 = 𝐴 − 𝐵 + 𝐶

Coefficients under test Nuisance coefficients

𝐸𝜓,𝜆 . taken with respect to the true parameters 𝜓 and 𝜆

𝜆0
∗ is the limiting value of the null coefficients



𝑝 + 𝛾 = 𝐴 − 𝐵 + 𝐶

The first term (A): A = 𝒑 + 𝒒

• Where p is the number of coefficients under test and q is the number of 

nuisance coefficients (i.e., coefficients not under test)

The second term (B): take limits and use Taylor series expansion…

• Closed form solution for GLM within the canonical form (Self et al., 1992). 

• No closed form solution for failure-time regression models with censoring.    

A numerical solution is possible, but would undermine our objective!

The third term (C): a closed form solution exists!

• Closed form solution for GLM (shown in Self et al., 1992)

• Closed form solution for Failure Time regression models with fixed,   

Type 1, right-censored data (our work)



𝜸 = 𝑨 − 𝑩 + 𝑪 − 𝒑
≈

𝜸 = 𝑪

“the dominance of the [C] term in the calculation of the non-

centrality parameter,” - Self et al. (1992)

“In our experience, the term [𝑨 − 𝑩 −𝒑 ] is usually very close to 

zero.” - Self et al. (1992), O’Brien and Shieh (1998), Shieh (2000), Brown et al. (1999)

All you need is C



Solving for C

Lognormal Solution

𝐶 =෍

𝑖=1

𝑘

𝑛𝑖
2𝑓𝑡𝑐,−𝜇𝑖 𝜇𝑖

∗ − 𝜇𝑖

𝑡𝑐
−1−

2𝜇𝑖
𝜎2

+
𝐹𝑡𝑐,𝜇𝑖 𝜇𝑖 − 𝜇𝑖

∗ 2

𝜎2
+ 2 − 2𝐹𝑡𝑐,𝜇𝑖 log

2 − 2𝐹𝑡𝑐,𝜇𝑖
2 − 2𝐹𝑡𝑐,𝜇𝑖

∗

Weibull Solution

𝐶 = ෍

𝑖=1

𝑘

𝑛𝑖 −
2

𝜎
𝑒−

𝜇𝑖
∗

𝜎 𝐹𝑡𝑐,𝜇𝑖 𝑒−
𝜇𝑖
𝜎 𝜎 + 𝑒

𝜇𝑖
∗

𝜎 𝜇𝑖 − 𝜇𝑖
∗ + 𝜎
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Equation Notes:
𝑓𝑡,𝜇 = 𝑓 𝑡, 𝜇, 𝜎 ; Ft,𝜇 = 𝐹(𝑡, 𝜇, 𝜎)

𝜆0
∗ is the limiting value of the null coefficients and is found by fitting a lognormal regression model to the 

alternative data. The alternative data are the failure times that represent the perfect fit to the alternative 
coefficients: 𝑇𝑖𝑗

∗ = 𝑒𝜇𝑖. Use standard failure-time model fitting software to fit the reduced model to 𝑇𝑖𝑗
∗ . 

The fitted coefficients are equal to 𝜆0
∗ and 𝜇𝑖

∗ = 𝑥𝑖
𝑇𝜆0

∗ + 𝑧𝑖
𝑇𝜓0. 

𝐶 = 𝐸𝜓,𝜆{log 𝑓𝑇𝑖𝑗,𝜇𝑖 𝛿𝑖𝑗 + log 1 − 𝐹𝑡𝑐,𝜇𝑖 1 − 𝛿𝑖𝑗 −

log 𝑓𝑇𝑖𝑗,𝜇𝑖
∗ 𝛿𝑖𝑗 + log 1 − 𝐹𝑡𝑐,𝜇𝑖

∗ 1 − 𝛿𝑖𝑗 }



Returning to the Example
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N: 204
Design: 2 x 2 x 3

Censor time: 𝑡𝑐: 10
Nominal failure rate at 7 days: ҧ𝑝 = 0.8

Effect size: Δ= .1
𝑝1 = .75 and 𝑝2 = .85

Lognormal distribution with 𝜎 = 2
𝑝1 = 𝐹𝑡𝑝,𝜇𝑝1 and 𝑝2 = 𝐹𝑡𝑝,𝜇𝑝1

𝜇1=.6 and 𝜇2=-.13

Main Effects Model: 
𝛽𝑖𝑛𝑡 + 𝛽𝐹1 + 𝛽𝐹2 + 𝛽𝐹31 + 𝛽𝐹32

Sum-to-zero contrast, effect size of 
alternative coefficients: 

𝛽𝑇 = [.23, . 36, . 36, . 36, . 00]

Illustrate power for 𝐹1

𝐻𝑜: 𝜓 = 0
𝐻𝐴: 𝜓 ≠ 0

𝜆𝑇 = 𝛽𝑖𝑛𝑡 , 𝛽𝐹2, 𝛽𝐹3 , 𝜓𝑇 = 𝛽𝐹1

Calculate C
𝜇𝑖 = 𝑥𝑖

𝑇𝜆 + 𝑧𝑖
𝑇𝜓

𝜇𝑖
∗ = 𝑥𝑖

𝑇𝜆0
∗

𝛾 = 𝐶 = 7.59

Power
𝑃𝑟 𝑡 > 𝛸𝛼=0.05

2

= 1 − ෨𝑋2 𝛸𝛼=0.05,
2 𝑝 = 1, 𝛾 = 7.59

= 1 − ෨𝑋2 3.84, 𝑝 = 1, 𝛾 = 7.59
= 0.7869



Does the simplifying assumption work? 
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Questions of Interest: 

• Approximate Power:  do we get a reasonable solution? 

• |Approximate Power – Monte Carlo Power|: how accurate is that solution? 
• Is calculating C good enough? 

Model Design N ҧ𝑝 𝚫𝐩 𝛔

Lognormal 22 64 0.5 .06 .5

Weibull 26 128 0.8 .12 1

256 3

Conditions varied using a 40-run D-optimal 
experimental design

𝑡𝑐 = 10; 𝑡𝑝 = 7

Power 
Approximation

(𝑪)

Monte
Carlo 

Power*

*Monte Carlo Power is based on 10,000 iterations



Approximate power results behave as expected
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𝚫𝒑 = . 𝟏𝟐

𝜟𝒑 =. 𝟎𝟔
ҧ𝑝 = .5 ҧ𝑝 = .8
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Differences from Monte Carlo Power are small 
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Most influential conditions:  ഥ𝒑,Design, Model

ത𝑃
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Design size:                   22 26

|Approximate power – Monte Carlo Power|



Is the method computationally efficient? 

We explore accuracy/timeliness trade-off:

• Study based on example construct.

• Power calculated for one coefficient, 𝛽𝐹1
• ‘True’ power, Monte Carlo Simulation with 5 million iterations: 0.78820

Monte Carlo: Stochastic 

Iteration cases considered: 100, 500, 1,000, 5,000, 10,000, 15,000, 20,000, 25,000

*Replicate each iteration case 20 times to estimate an average iteration power and 

corresponding accuracy, RMSE, and an average iteration time.

Power Approximation: Deterministic 
Power: 0.78688

Accuracy: 0.00132

Time: 0.25 seconds
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Example Monte Carlo Output
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Monte Carlo output for the 1,000 iteration case, with 20 replicates

Power

`true` power = 0.78820 1,000 iteration mean power =  0.79 1,000 iteration mean time = 4.10 sec



The benefit of our approximation method relies on its 

computational efficiency. 

24

Power Approximation Method    
Absolute Error = .001    

Time (sec) = 0.25
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Computational time can quickly compound!
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The 1,000 iteration case now takes:1

Monte Carlo: 4 seconds x 9 coefficients x 5 iterations to optimize 

= 3 minutes

Power Approx.: 0.25 seconds x 9 coefficients x 5 iterations to optimize 

= 11 seconds 

A main effects + two-factor interaction model has nine coefficients.
→ We need nine power computations. 

Typically, confidence and power are fixed and we solve for sample size. 
→ This requires iterative numerical techniques. 

→ Suppose for example, our problem requires five iterations.

1 Using R Software with a Processor: Intel® Core™ i7-7600U CPU @2.80 Ghz (4 CPUs), ~2.9 GHz



We’ve made it easy to implement! 

https://test-science.shinyapps.io/survpow/

• Model specifies the expected distribution of failure times 

• Nominal Probability is the nominal probability of failure at the Target Time.

• Delta Probability is the effect size. That is,

p1 = pnom +
pdelta
2

p2 = pnom +
pdelta
2

and the Location parameters μ1 and μ2 are calculated using p1 and p2

• Sigma is the scale parameter (constant)

• Failure times are not observed after the Censor Time (Fixed, Type 1, Right 

Censoring)

• Alpha is the Type I error rate. 

• Sample Size adjusts the number of runs in the D-optimal experiment. 

• The simulate checkbox allows the user to use Monte Carlo to calculate 
power for the likelihood ratio test. 

https://test-science.shinyapps.io/survpow/
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