

Order-of-Addition Experiment

Outline

- Introduction (baby optimal design)
- Model Formulation (PWO)
- Optimality of the Full PWO Design
- orthogonality of a PWO Design
- Minimal-point PWO Design
- Optimal Fractional PWO Design
- Conclusion and Future Work

٩	There are m! how could we	possible run fra	e com ction	binat of the	ions, em?
1	1→2→3	1234	1243	1423	4123
172	1→3→2	1324	1342	1432	4123
2→1	2→1→3	2134	2143	2413	4213
	27273	2314	2341	2431	4231
	27371	3124	3142	3412	4312
	3→1→2	3214	3241	3421	4321
	3→2→1				

For three components, there are 3!=6 possible "treatments" to be tested.
$1 \rightarrow 2 \rightarrow 3$ $1 \rightarrow 3 \rightarrow 2$ $2 \rightarrow 1 \rightarrow 3$ $2 \rightarrow 3 \rightarrow 1$ $3 \rightarrow 1 \rightarrow 2$ $3 \rightarrow 2 \rightarrow 1$
In general, there are m! treatments to be tested.
for example, 10!=3,638,800. This may not be feasible.

OofA in Gnetics Areas The construction of phylogenetic trees depends on the order of taxa Many taxa (more than 10) are involved... Often, a set of random orders are tested (Olsen et al. 1994, Stewart et al. 2001) How to choose a subset of the orders? Randomly or systematically???

OofA in Different Areas

- Food science: Fuleki and Francis(1968)
- Bio-chemistry Science: Shinohara & Ogawa (1998)
- Food science: Jourdain et al. (2009)
- Nutritional science: Karim et al. (2000)
- Pharmaceutical science: Rajaonarivony et al. (1993)

Experiments are needed to find the optimal addition order!

Research Issues

How to run (small) n, among those m! experiments, to find out the "optimal" sequence/order-of-addition (OofA)?

Note: 10!=3,628,800

Linking to conventional design...
What are the experimental variables (X_i's)?
What is the experimental unit?

PWO model
For any order *a* affects the response via
the Pairwise-order (PWO) effect

$$\tau(\mathbf{a}) = \beta_0 + \sum_{1 \le j < k \le m} z_{jk}(\mathbf{a})\beta_{jk},$$

$$\tau(\mathbf{a}): \text{ expected response arising from } \mathbf{a}$$

$$\beta_{jk}\text{'s: linear coefficients to estimate}$$
With *m* components,
there are $\binom{m}{2}$ PWO factors.

Full PWO Design

PWO design: $[z_{jk}(\boldsymbol{a}_i)]_{jk}$

Full PWO design (Z_f): representing all the permutations

Se	quei	nce	$I_{1\rightarrow 2}$	$I_{1\rightarrow 3}$	$I_{2\rightarrow 3}$
1	2	3	+	+	+
1	3	2	+	+	-
2	1	3	-	+	+
2	3	1	-	-	+
3	1	2	+	-	-
3	2	1	-	_	-

As compared with 2^3 Full Factorial design, the treatment (+-+) and (-+-) are not feasible.

				Pair	-wise ord	ering fac	tors	
	Index	Order	$I_{1\rightarrow 2}$	$I_{1\rightarrow 3}$	$I_{2\rightarrow 3}$	$I_{1\rightarrow 4}$	$I_{2\rightarrow4}$	$I_{3\rightarrow 4}$
	1234	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$	1	1	1	1	1	1
	2134	$2 \rightarrow 1 \rightarrow 3 \rightarrow 4$	-1	1	1	1	1	1
100 - 1	1324	$1 \rightarrow 3 \rightarrow 2 \rightarrow 4$	1	1	-1	1	1	1
111-4	2314	$2 \rightarrow 3 \rightarrow 1 \rightarrow 4$	-1	-1	1	1	1	1
	3124	$3 \rightarrow 1 \rightarrow 2 \rightarrow 4$	1	-1	-1	1	1	1
	3214	$3 \rightarrow 2 \rightarrow 1 \rightarrow 4$	-1	-1	-1	1	1	1
	1243	$1 \rightarrow 2 \rightarrow 4 \rightarrow 3$	1	1	1	1	1	-1
	2143	$2 \rightarrow 1 \rightarrow 4 \rightarrow 3$	-1	1	1	1	1	-1
	1342	$1 \rightarrow 3 \rightarrow 4 \rightarrow 2$	1	1	-1	1	-1	1
	2341	$2 \rightarrow 3 \rightarrow 4 \rightarrow 1$	-1	-1	1	-1	1	1
	3142	$3 \rightarrow 1 \rightarrow 4 \rightarrow 2$	1	-1	-1	1	-1	1
	3241	$3 \rightarrow 2 \rightarrow 4 \rightarrow 1$	-1	-1	-1	-1	1	1
	1423	$1 \rightarrow 4 \rightarrow 2 \rightarrow 3$	1	1	1	1	-1	-1
	2413	$2 \rightarrow 4 \rightarrow 1 \rightarrow 3$	-1	1	1	-1	1	-1
	1432	$1 \rightarrow 4 \rightarrow 3 \rightarrow 2$	1	1	-1	1	-1	-1
	2431	$2 \rightarrow 4 \rightarrow 3 \rightarrow 1$	-1	-1	1	-1	1	-1
	3412	$3 \rightarrow 4 \rightarrow 1 \rightarrow 2$	1	-1	-1	-1	-1	1
	3421	$3 \rightarrow 4 \rightarrow 2 \rightarrow 1$	-1	-1	-1	-1	-1	1
	4123	$4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	1	1	1	-1	-1	-1
	4213	$4 \rightarrow 2 \rightarrow 1 \rightarrow 3$	-1	1	1	$^{-1}$	-1	-1
	4132	$4 \rightarrow 1 \rightarrow 3 \rightarrow 2$	1	1	-1	-1	-1	-1
	4231	$4 \rightarrow 2 \rightarrow 3 \rightarrow 1$	-1	-1	1	-1	-1	-1
	4312	$4 \rightarrow 3 \rightarrow 1 \rightarrow 2$	1	-1	-1	-1	-1	-1
	4321	$4 \to 3 \to 2 \to 1$	-1	-1	-1	-1	-1	-1

Inform	nation n	atrix	of PV	VO D	esign	
The mo full PW $\mathbf{M}_f = \mathbf{X}$	$\begin{array}{l} \begin{array}{l} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	(inform) $\mathbf{X}_f = [$	nation m 1, Z _f] ai	natrix) o nd N =	of <i>m</i> !	
for $m =$	$\mathbf{A}_{f} = \mathrm{dia}_{f}$	$ag(1, \widetilde{\mathbf{M}}_f)$) and			
$\widetilde{M}_{f} =$	$\begin{bmatrix} 1 & 1 \\ 1/3 & 1 \\ 1/3 & 1 \\ -1/3 & 1 \\ -1/3 & 1 \\ 0 & -1 \end{bmatrix}$	$\begin{array}{cccc} 3 & 1/3 \\ 1 & 1/3 \\ 3 & 1 \\ 3 & 0 \\ 0 & 1/3 \\ 3 & 1/3 \end{array}$	$-1/3 \ 1/3 \ 0 \ 1 \ 1/3 \ -1/3 \ -1/3$	$-1/3 \ 0 \ 1/3 \ 1/3 \ 1 \ 1 \ 1 \ 3 \ 1/3$	$\begin{smallmatrix} 0 \\ -1/3 \\ 1/3 \\ -1/3 \\ 1/3 \\ 1 \end{smallmatrix}$	

Main Challenge									
The moment matrix is complicated									
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$									
The PWO design region is irregular, due to the transitive property.									
aue to the transitive property									
 a fi z_{jk} = 1 and z_{kl} = 1 and z_{jl} finds be 1. a the level combination (+, +, -) is invalid for the triplet (z_{jk}, z_{kl}, z_{kl}) 									

Optimality Theorem

Theorem 1.

The moment matrix of PWO **full** design is ϕ -optimal among all full/**fractional** PWO design,

for any design optimality criterion ϕ which is concave and signed-permutation invariant.

Optimality Theorem

the full PWO design is optimal under:

- **D**-criterion = arg max $[\det(\mathbf{M})]^{1/p}$, $p = \binom{m}{2} + 1$ **A**-criterion = arg min tr (\mathbf{M}^{-1})
- *E*-criterion = arg max λ_{\min} (**M**)
- $M.S.-criterion = \arg \min tr (\mathbf{M}^2)$

Explicit Values for the Optimality Criteria Explicit Values for the Optimality Criteria Theorem 2 M_f has eigenvalues 1, (m + 1)/3 and 1/3, with multiplicities 1, m - 1 and $\binom{m-1}{2}$, respectively. Then for the full design: D-criterion = $[\det(M_f)]^{1/p} = \left[\frac{(m+1)^{m-1}}{3^q}\right]^{\frac{1}{p}}$, A-criterion = $tr(M_f^{-1}) = 1 + \frac{3m(m-1)^2}{2(m+1)}$, E-criterion = $\lambda_{\min}(M_f) = \frac{1}{3}$, and M.S.-criterion = $tr(M_f^2) = 1 + \frac{(m-1)m(2m+5)}{18}$.

p=(m|2)+1

BY JIAYU PENG Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. jup250@psu.edu

RAHUL MUKERJEE Indian Institute of Management Calcuta, Joka, Diamond Harbour Road, Kolkata 700104, India rmuk0902@gmail.com

AND DENNIS K.J. LIN

Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A. dk15@psu.edu

SUMMARY

In an order-of-addition experiment, each treatment is a permutation of m components. It is often unaffordable to test all the m! treatments, and the design problem arises. We consider the model in which the response of a treatment depends on the pairwise orders of the components. The optimal design theory under this model is established, and the optimal values of the D_{γ} , A_{γ} , E_{γ} , and M.S.-criteria are derived. We identify a special constraint on the correlation structure of such designs. The closed-form construction of a class of optimal designs is obtained, with examples for illustration.

 $m=3 \rightarrow m!=6 \& \binom{m}{2}+1=4;$ which (best) 4 among those 6 runs?

		Pair-wi	ise ordering	g factors
Index	Order	$I_{1\rightarrow 2}$	$I_{1\rightarrow 3}$	$I_{2\rightarrow 3}$
123	$1 \rightarrow 2 \rightarrow 3$	1	1	1
213	$2 \rightarrow 1 \rightarrow 3$	-1	1	1
132	$1 \rightarrow 3 \rightarrow 2$	1	1	-1
231	$2 \rightarrow 3 \rightarrow 1$	-1	-1	1
312	$3 \rightarrow 1 \rightarrow 2$	1	-1	-1
321	$3 \rightarrow 2 \rightarrow 1$	-1	-1	-1

				Pair	-wise ord	ering fac	tors	
	Index	Order	$I_{1\rightarrow 2}$	$I_{1\rightarrow 3}$	$I_{2\rightarrow 3}$	$I_{1\rightarrow 4}$	$I_{2\rightarrow4}$	$I_{3\rightarrow 4}$
	1234	$1 \rightarrow 2 \rightarrow 3 \rightarrow 4$	1	1	1	1	1	1
	2134	$2 \rightarrow 1 \rightarrow 3 \rightarrow 4$	-1	1	1	1	1	1
	1324	$1 \rightarrow 3 \rightarrow 2 \rightarrow 4$	1	1	-1	1	1	1
	2314	$2 \rightarrow 3 \rightarrow 1 \rightarrow 4$	-1	-1	1	1	1	1
100 - 1	3124	$3 \rightarrow 1 \rightarrow 2 \rightarrow 4$	1	-1	-1	1	1	1
m=4	3214	$3 \rightarrow 2 \rightarrow 1 \rightarrow 4$	-1	-1	-1	1	1	1
$\rightarrow m/-24$	1243	$1 \rightarrow 2 \rightarrow 4 \rightarrow 3$	1	1	1	1	1	-1
(m)	2143	$2 \rightarrow 1 \rightarrow 4 \rightarrow 3$	-1	1	1	1	1	-1
& $\binom{m}{2}+1=7$:	1342	$1 \rightarrow 3 \rightarrow 4 \rightarrow 2$	1	1	-1	1	-1	1
(2)	2341	$2 \rightarrow 3 \rightarrow 4 \rightarrow 1$	-1	-1	1	-1	1	1
	3142	$3 \rightarrow 1 \rightarrow 4 \rightarrow 2$	1	-1	-1	1	-1	1
which	3241	$3 \rightarrow 2 \rightarrow 4 \rightarrow 1$	-1	-1	-1	-1	1	1
	1423	$1 \rightarrow 4 \rightarrow 2 \rightarrow 3$	1	1	1	1	-1	-1
(best) 7	2413	$2 \rightarrow 4 \rightarrow 1 \rightarrow 3$	-1	1	1	-1	1	-1
among	1432	$1 \rightarrow 4 \rightarrow 3 \rightarrow 2$	1	1	-1	1	-1	-1
1	2431	$2 \rightarrow 4 \rightarrow 3 \rightarrow 1$	-1	-1	1	-1	1	-1
those 24 runs?	3412	$3 \rightarrow 4 \rightarrow 1 \rightarrow 2$	1	-1	-1	-1	-1	1
	3421	$3 \rightarrow 4 \rightarrow 2 \rightarrow 1$	-1	-1	-1	-1	-1	1
	4123	$4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	1	1	1	-1	-1	-1
	4213	$4 \rightarrow 2 \rightarrow 1 \rightarrow 3$	-1	1	1	-1	-1	-1
	4132	$4 \rightarrow 1 \rightarrow 3 \rightarrow 2$	1	1	-1	-1	-1	-1
	4231	$4 \rightarrow 2 \rightarrow 3 \rightarrow 1$	-1	-1	1	-1	-1	-1
	4312	$4 \rightarrow 3 \rightarrow 1 \rightarrow 2$	1	-1	-1	-1	-1	-1
	4321	$4 \rightarrow 3 \rightarrow 2 \rightarrow 1$	-1	-1	-1	-1	-1	-1

		Mir	nimal-	Point Dest	ign	(<i>m</i> =	3)
1- 1- 2-	→2→ →3→ →1→	3 2 3		Maximun D-effic	iency:	0.71	
2-	$\rightarrow 3 \rightarrow $ $\rightarrow 1 \rightarrow $	1 2		Sample design:	123	, 213, 1	132, 231
5-	+∠+ ∫ ₂	1 m=	3		$I_{1 \rightarrow 2}$	$I_{1\rightarrow3}$	$I_{2 \rightarrow 3}$
				123	+	+	+
			- 12	213	_	+	+
cy	9 -			132	+	+	_
uanba.				231	_	_	+
Fr	0	- 3 - 0 0.71		D-efficiency of f Relative Efficien	ull des cy: 0.7	sign: 0.3 71/0.88	88 = 0.81

	4							4	100 E	A A A A A A A A A A A A A A A A A A A	
• Distribution of the D-efficiency of the 11- point designs for $m=5$ is infeasible to search.											
 Design 10⁷ (10 	wit) mi	h m Ilion	axin s) fi	nal [racti	D-ef ons	ficie of t	ncy he F	0.59 PWC	91 f) de	rom sign	
	1	1	1	1	1	1	1	1	1	1	
	1	1	$^{-1}$	1	1	1	1	1	1	-1	
	-1	-1	1	1	1	1	1	1	1	-1	
_	-1	$^{-1}$	1	$^{-1}$	1	$^{-1}$	$^{-1}$	1	1	1	
$\mathbf{O} =$	-1	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	1	$^{-1}$	1	1	1	
	-1	1	1	$^{-1}$	-1	$^{-1}$	1	1	$^{-1}$	1	
	1	1	-1	-1	-1	-1	1	-1	1	1	
	1	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	1	
	-1	1	1	1	1	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	-1	
	-1	-1	$^{-1}$	-1	1	1	$^{-1}$	-1	$^{-1}$	-1	
	1	1	1	$^{-1}$	$^{-1}$	$^{-1}$	-1	$^{-1}$	$^{-1}$	-1	

Construction of
minimal-point OofA designs
$$(m \ge 6)$$

Take H₁=(Q:1)
then H is a minimal-point OofA design.

$$H = \begin{pmatrix} H_1 & H_2 \\ H_3 & H_4 \end{pmatrix}_{(\binom{m}{2}+1)\times\binom{m}{2}},$$

$$H_2 \text{ is a matrix with all elements=-1;}$$

$$H_3 \text{ is a matrix with all elements=+1;}$$

$$H_4=(h_{ij}) \text{ is a matrix with elements=+1, if } i \le j;$$
and -1 otherwise.

$$O(H) = (4^{\binom{m}{2}-10}|H_1^TH_1|)^{1/(\binom{m}{2}+1)} / (\binom{m}{2}+1).$$

D-ef	ficienci	es of			
the fi	ull PWO	designs a	nd the mir	nimal-poin	t desig
m	m!	$\binom{m}{2} + 1$	$D_e(H)$	$D_e(F_m)$	$D_r(H$
3	6	4	0.707	0.877	0.810
4	24	7	0.697	0.777	0.89'
5	120	11	0.591	0.706	0.83'
6	720	16	0.349	0.656	0.53

Information matrix of PWO Design

The moment matrix (information matrix) of full PWO design: $\mathbf{M}_f = \mathbf{X}_f^T \mathbf{X}_f / N$, with $\mathbf{X}_f = [\mathbf{1}, \mathbf{Z}_f]$ and N = m!

for $m = 4$,	$\mathbf{M}_f =$	diag(1,	$\widetilde{\mathbf{M}}_{f}$)	and
---------------	------------------	---------	--------------------------------	-----

$\widetilde{M}_f =$	$\begin{array}{c} 1 \\ 1/3 \\ 1/3 \\ -1/3 \\ -1/3 \end{array}$	1/3 1/3 1/3 0	1/3 1/3 1 0 1/3	$-1/3 \\ 1/3 \\ 0 \\ 1 \\ 1/3 \\ 1/2$	$-1/3 \\ 0 \\ 1/3 \\ 1/3 \\ 1 \\ 1 \\ 1/2$	$\begin{bmatrix} 0 \\ -1/3 \\ 1/3 \\ -1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$	
L	0	-1/3	1/3	-1/3	1/3	´1 」	

	9	A	n	Ex	ample of Optimal Design
-	Thi	s d	esi	gn	entails a partitioned structure:
-	1	2	3	4	
	2	1	4	3	$[\mathbf{B}_1 \ \mathbf{B}_1]$
	4	3	1	2	
	3	4	2	1	$\ominus \mathbf{B}_1 \ \mathbf{B}_1$
	1	3	2	4	
	3	1	4	2	D ₂ D ₂ W _{ith} B ₁ = $\begin{bmatrix} 1 & 2 \end{bmatrix} \overline{\mathbf{B}}_{1} = \begin{bmatrix} 3 & 4 \end{bmatrix}$
	4	2	1	3	$\mathbf{\overline{B}}$ $\mathbf{\overline{B}}$ $\mathbf{\overline{B}}$
	2	4	3	1	$\begin{bmatrix} \Theta \mathbf{D}_2 & \mathbf{D}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 4 \end{bmatrix}$
	1	4	2	3	B ₂ B ₂ B ₂ = $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$, B ₂ = $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$,
	4	1	3	2	
	3	2	1	4	$\Theta \overline{\mathbf{B}}_2 \mathbf{B}_2$ $\mathbf{B}_3 = \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}, \overline{\mathbf{B}}_3 = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$
_	2	3	4	1	

0	A	n	exc	ample of Optimal PWO Design			
For m=4 (m!=24), the following (half) fractional PWO design is "optimal."							
1	2	3	4				
2	1	4	3				
4	3	1	2	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$			
3	4	2	1	$\widetilde{M}_f = \left[\begin{array}{cccc} 1/3 & 1/3 & 1 & 0 & 1/3 & 1/3 \\ -1/3 & 1/3 & 0 & 1 & 1/3 & -1/3 \end{array} \right]$			
1	3	2	4	$ \begin{bmatrix} -1/3 & 1/3 & 0 & 1 & 1/3 & -1/3 \\ -1/3 & 0 & 1/3 & 1/3 & 1 & 1/3 \end{bmatrix} $			
3	1	4	2	$\begin{bmatrix} 0 & -1/3 & 1/3 & -1/3 & 1/3 & 1 \end{bmatrix}$			
4	2	1	3				
2	4	3	1	It above the same memory			
1	4	2	3	it share the same moment			
4	1	3	2	matrix with the full PWO design.			
3	2	1	4	C			
2	3	4	1				

Ar	ı Illustra	tive Exam	ple						
Different orders yield different costs									
	Order	Completion times (x_1, x_2, x_3)	Total cost						
	1→2→3	(5, 8, 10)	1362						
	1→3→2	(5, 10, 7)	1293						
	2→1→3	(8, 3, 10)	1156						
	2→3→1	(10, 3, 5)	847						
	3→1→2	(7, 10, 2)	1122						
	3→2→1	(10, 5, 3)	828						
	3→2→1 yie	elds the min	imum cos	st!					

A Working	Exa	тp	le		Ą		A ANA	
 the PWO model is used as the approximate model 	1 1 1 2 2 2	2 3 4 5 1 3 5	6 5 2 6 4 4 4	3 4 6 2 3 5 3	5 6 5 4 6 1 6 2	4 2 3 5 6 1		95.5 58.0 55.5 52.5 64.1 57.9 94.4 108.3
• Test the job orders in an optimal PWO design	2 3 3 3 3 3 4 4 4	6 1 2 4 6 1 5 6	4 5 2 1 5 5 6 3	1 2 6 1 4 4 3 1 1	3 4 1 5 1 2 2 2	5 4 6 2 6 3 5	Obtain W _a 's	115.5 117.2 70.3 159.7 137.8 32.2 69.4 155.5 134.2
 A 24-run optimal design from Voelkel (2017) 	4 5 5 5 5 6 6	6 1 2 4 2 4	3 6 6 2 1 2	5 2 4 3 5 5	2 4 3 1 3 3	1 6 2 4 6 4 3		134.2 35.3 57.8 119.6 47.4 96.7 76.0 127.1

Confirmation		
• Evaluate all possible order of the		
m=6 JODS (a total of $6!=/20$	Order	Wa
orders)	4→2→5→1→3→6	23.89
• Findings:	4→5→2→1→3→6	23.87
• The minimum among all 720 orders is W =23.73.	5→4→2→1→3→6	23.78
• Our obtained orders rank the 3 rd to 8 th among all the 720	5→2→4→1→3→6	23.75
orders	2→5→4→1→3→6	23.76
-(nearly) optimal! The difference is insignificant!!	2→4→5→1→3→6	23.87

OofA Model and Design in Real-life and Modern Scheduling Problems

- A large variety of job scheduling problems in practice: different job-machine setups/cost functions
- The OofA approach is potentially useful as
 - An effect approximate method for large-scale scheduling (usually NP-hard)
 - A generic approach for different types of scheduling problems; particularly useful when (1) the problem type might vary at any time – online scheduling (2) the cost function is unknown – black box
 - A method of determining initial points for existing heuristic algorithms, such as simulated annealing and genetic algorithm
 - A tool for challenging problems with stochastic process times

Conclusion

- The optimality theory for PWO designs
- The explicit values of optimality criteria
- Description on the orthogonality of any PWO design
- Systematic construction of efficient minimalpoint PWO designs
- Systematic construction of optimal fractional PWO designs

