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Polymer composites

A composite is any material made of more than one component with
different physical or chemical properties.
Polymer composites are made from polymers or from polymers along
with other kinds of materials.
Light weight, high strength, and long-term durability
Wind turbine blades and aircraft are usually made of polymer
composites.
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Fatigue tests for polymer composites

The majority of testing is in accordance with the current standards
provided in ASTM E739.
The most common form of fatigue testing is cyclic constant
amplitude fatigue testing.
Fatigue occurs when the material is subject to varying levels of stress
over a period of time.
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Constant amplitude fatigue testing
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Objective

One main goal of fatigue test is to demonstrate that a p proportion of
the materials can last a certain number of cycles under the use stress
level.

It is related to the prediction of the quantile of the cycles to failure
distribution at use condition.

The objective of this talk is to develop a sequential test planning
strategy to polymer composites fatigue testing.
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Relationship between cycles and stress levels

Three samples are tested for
ultimate tensile strength σu.
Four stress levels are used.
S-N curve is fitted by an
empirical model in Epaarachchi
and Clausen(2003).
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S-N curve

Epaarachchi and Clausen (2003) proposed the relationship as

N(σM) =
1
B log

{
1 +

(
B
A

)
f B
(
σu
σM
− 1
)(

σu
σM

)γ(α)−1
[1− ψ (R)]−γ(α)

}
.

A is environmental effects on the material fatigue.
B is effects from the material itself.
σM and σm are the maximum and minimum strength during the test.
f is the frequency of the cyclic testing.

ψ (R) =

{
R −∞ < R < 1
1
R 1 < R <∞

, where R = σm/σM .

γ (α) = 1.6− ψ |sin (α)| is a function of the smallest angle α.
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Statistical model for cycles to failure

Assume the fatigue data are generated from the log-location-scale family
of distributions, e.g., lognormal and the Weibull distribution.
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Statistical model for cycles to failure
The log-location-scale family is used to describe the cycles to failure
(Ti ). That is,

F (ti ) = Φ

( log(ti )− µσMi
(A,B)

ν

)
.

The location parameter is µσMi
(A,B) = N(σMi ).

The scale parameter is ν.
The unknown parameters are θ = (A,B, ν).
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Likelihood function

The likelihood function is

L (θ|data) =
n∏

i=1

[
1
νti

φ

( log (ti )− µσMi
(A,B)

ν

)](1−δi )

×
[

1− Φ

( log (ti )− µσMi
(A,B)

ν

)]δi

,

where δi is the censoring indicator.
The log-likelihood function is

l (θ|data) =
n∑

i=1
(1− δi ) [− log ν − log ti + log φ (zi )] + δi log [1− Φ (zi )] ,

where zi =
[
log (ti )− µσMi

(A,B)
]/
ν .
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Asymptotic variance

The Fisher information matrix is

I (θ) = E
[
−∂

2l (θ)

∂θ∂θ′

]
.

The estimator of logarithm of the p quantile at stress s is
log
(
ξ̂p,s

)
= µs

(
Â, B̂

)
+ zp ν̂, where Â, B̂, and ν̂ are estimators of A, B,

and ν.
The large-sample asymptotic variance of log

(
ξ̂p,uk

)
at use condition uk is

derived as
AVar

{
log
(
ξ̂p,uk

)}
= ckΣθck

′,

where ck =
[
∂µuk (A,B)

∂A ,
∂µuk (A,B)

∂B , zp

]
and Σθ = I−1 (θ).
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Distribution profile of use stress levels

The weighted sum of the large-sample asymptotic variance of the
estimator of the p quantile of the lifetime distribution at a vector of
specified use levels can be expressed as

AVar
{

log
(
ξ̂p,use

)}
=

K∑
k=1

wkAVar
{

log
(
ξ̂p,uk

)}
,

where wk is the weight of the use level uk and
∑K

k=1 wk = 1.
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Traditional optimum design

Stress level
A fatigue test contains S stress levels.
Let qi = σMi/σu and subject to qi ∈ [qL, qU ], where i = 1, ...,S, qL and
qU are the lower and upper bounds for stress levels.

King et al. (2016) have discussed the optimum design on fatigue
testings for composite material.

The results are obtained by minimizing AVar
{

log
(
ξ̂p,use

)}
under the

assumption that values of true parameters are known.
The optimum design always ends up with a lower and a higher stress
levels.
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Difficulty

Traditional optimum designs
Depending on values of parameters
Assume true values of parameters are known
Treat maximum likelihood (ML) estimators as the true values
Unreliable inference based on ML estimators for small sample size

Limits of experiments
Experiments are time-consuming and costly
The number of samples can be tested at a time are limited

===============================
(Sequential) Bayesian designs

Allow prior knowledge to be used in design
Deal with difficulties of traditional optimum designs
D-optimality (Dror and Steinberg, 2008; Roy et al., 2009; Zhu et al.,
2014)
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Bayesian test planning

Bayesian D-optimality design (Chaloner and Verdinelli, 1995):

η∗ = arg max
η

∫
Θ

log det (I (θ, η))π (θ)dθ,

η is all possible designs, η∗ is the optimum design.
I (θ, η) is the Fisher information matrix of θ for the design η.
π (θ) is the prior distribution of θ.

Sequential Bayesian D-optimality design (Roy et al., 2009):

q∗D,n+1 = arg max
q

∫
Θ

log det
( n∑

i=1
I (θ, qi ) + I (θ, q)

)
π (θ|qn, tn)dθ.

I (θ, q) is the Fisher information matrix for the stress level q.
π (θ|qn, tn) is the posterior distribution for θ given currently available
data.
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C-optimality

For reliability analysts, it is important to obtain a precise prediction of
a product’s lifetime.
The objective function is written as

φn (q) =

∫
Θ

V (q,θ)π (θ|qn, tn) dθ,

where V (q,θ) =
[∑K

k=1 wkckΣθ (q) ck
T
]

and
Σθ (q) = [

∑n
i=1 I (θ, qi ) + I (θ, q)]−1 .

The optimum (n + 1)th design is

q∗C ,n+1 = arg min
q∈[qm,qM ]

φn (q) .
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Algorithm
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Example revisited

The controlled settings are R = 0.1, α = 0, and σu = 1339.67 MPa.

Epaarachchi and Clausen (2003) provided the fitted values of A and B for
different materials under different experimental settings.

Assume the prior distributions are A ∼Unif(0, 0.1), B ∼Unif(0, 1), and ν2 ∼
Inv.Gamma(4.5, 3).

MCMC method and the Metropolis-Hastings algorithm are used to simulate
the Markov chains.

Â B̂ ν̂

ML estimators 0.0157 0.3188 0.7259
Bayesian estimators 0.0145 0.3444 0.8413

True values of parameters are set as θ̂0 = (0.0157, 0.3188, 0.7259).
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Proposed sequential Bayesian design

Let qL = 0.35 and qU = 0.75, and 12 new optimal design points are
determined sequentially.

The optimum stress levels can be divided into two groups: higher and
lower levels.
The proportion of higher and lower levels are 0.36 and 0.64.
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Accurate estimation for small sample size?

Maximum likelihood estimators

Â B̂ ν̂

θ̂0 0.0157 0.3188 0.7259
θ̂1 0.0005 0.7429 0.1658
θ̂2 0.0162 0.3333 0.4044

21 / 27



Comparison I

Assume the historical data is subdata 1 or subdata 2, and compare to the
two-level optimum design (TOD, King et al. 2016).

Design Stress levels Sample size allocation

TOD based on θ̂0 (0.35, 0.75) (8, 4)

TOD based on θ̂1 (0.65, 0.75) (11, 1)

TOD based on θ̂2 (0.35, 0.75) (8, 4)

mean(AVar) Subdata 1 Subdata 2

TOD by θ̂0 0.6236 0.4276
Sequential Bayesian design 0.7663 0.7170

TOD by ML estimators 4.0337 0.4240
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Sample size allocation
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Comparison II

Randomly taking 3 observations as the historical data, determine the
traditional optimal design based on its ML estimators and the
sequential Bayesion design (SBD).
There are 165 combinations chosen in the simulation study.
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Sample size allocation
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Conclusion and Future Research

In sequential Bayesian designs,
The optimal sequential Bayesian designs make new design points to
either higher or lower stress levels.
The sample size allocation is similar to the traditional two-level
optimal design under the true values.
The proposed method is more robust for small sample size.

Future research:
Roy et al. (2009) proved the sequential Bayesian D-optimal design
converges to the local D-optimal design for binary data.
What are convergence properties of sequential Bayesian design for life
test planning?

26 / 27



Reference

Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statistical
Science, pages 273–304.

Dror, H. A. and Steinberg, D. M. (2008). Sequential experimental designs for generalized linear
models. Journal of the American Statistical Association, 103(481):288–298.

Epaarachchi, J. A. and Clausen, P. D. (2003). An empirical model for fatigue behavior
prediction of glass fibre-reinforced plastic composites for various stress ratios and test
frequencies. Composites Part A: Applied science and manufacturing, 34(4):313–326.

King, C., Hong, Y., DeHart, S. P., DeFeo, P. A., and Pan, R. (2016). Planning fatigue tests for
polymer composites. Journal of Quality Technology (tentatively accepted).

Roy, A., Ghosal, S., and Rosenberger, W. F. (2009). Convergence properties of sequential
bayesian d-optimal designs. Journal of Statistical Planning and Inference, 139(2):425–440.

Zhu, L., Dasgupta, T., and Huang, Q. (2014). A D-optimal design for estimation of parameters
of an exponential-linear growth curve of nanostructures. Technometrics, 56(4):432–442.

27 / 27


	Background and Introduction
	Fatigue Data and Model
	Test Planning Methodology
	Sequential Testing and Comparison
	Conclusion and Future Research

