Sequential Test Planning for Polymer Composites

Yili Hong¹

FTC 2018 October 05, 2018

Joint work with I-chen Lee², Sheng-Tsaing Tseng³, and Tirthankar Dasgupta⁴

¹Department of Statistics, Virginia Tech, Blacksburg, VA
 ²Department of Statistics, National Cheng Kung University, Tainan, Taiwan
 ³Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan
 ⁴Department of Statistics and Biostatistics, Rutgers University, New Brunswick, NJ

1 Background and Introduction

- Patigue Data and Model
- 3 Test Planning Methodology
- 4 Sequential Testing and Comparison
- 5 Conclusion and Future Research

Polymer composites

- A composite is any material made of more than one component with different physical or chemical properties.
- Polymer composites are made from polymers or from polymers along with other kinds of materials.
- Light weight, high strength, and long-term durability
- Wind turbine blades and aircraft are usually made of polymer composites.

Fatigue tests for polymer composites

- The majority of testing is in accordance with the current standards provided in ASTM E739.
- The most common form of fatigue testing is cyclic constant amplitude fatigue testing.
- Fatigue occurs when the material is subject to varying levels of stress over a period of time.

Constant amplitude fatigue testing

5/27

э

- One main goal of fatigue test is to demonstrate that a *p* proportion of the materials can last a certain number of cycles under the use stress level.
- It is related to the prediction of the quantile of the cycles to failure distribution at use condition.
- The objective of this talk is to develop a sequential test planning strategy to polymer composites fatigue testing.

- Three samples are tested for ultimate tensile strength σ_u.
- Four stress levels are used.
- S-N curve is fitted by an empirical model in Epaarachchi and Clausen(2003).

Epaarachchi and Clausen (2003) proposed the relationship as

$$N(\sigma_M) = \frac{1}{B} \log \left\{ 1 + \left(\frac{B}{A}\right) f^B \left(\frac{\sigma_u}{\sigma_M} - 1\right) \left(\frac{\sigma_u}{\sigma_M}\right)^{\gamma(\alpha) - 1} \left[1 - \psi(R)\right]^{-\gamma(\alpha)} \right\}.$$

- A is environmental effects on the material fatigue.
- *B* is effects from the material itself.

• σ_M and σ_m are the maximum and minimum strength during the test.

• *f* is the frequency of the cyclic testing.

•
$$\psi(R) = \begin{cases} R & -\infty < R < 1 \\ \frac{1}{R} & 1 < R < \infty \end{cases}$$
, where $R = \sigma_m / \sigma_M$.

• $\gamma(\alpha) = 1.6 - \psi |\sin(\alpha)|$ is a function of the smallest angle α .

Statistical model for cycles to failure

Assume the fatigue data are generated from the log-location-scale family of distributions, e.g., lognormal and the Weibull distribution.

Statistical model for cycles to failure

 The log-location-scale family is used to describe the cycles to failure (*T_i*). That is,

$$F(t_i) = \Phi\left(\frac{\log(t_i) - \mu_{\sigma_{M_i}}(A, B)}{\nu}\right)$$

- The location parameter is $\mu_{\sigma_{M_i}}(A, B) = N(\sigma_{M_i})$.
- The scale parameter is ν .
- The unknown parameters are $\theta = (A, B, \nu)$.

Likelihood function

• The likelihood function is

$$\begin{split} L(\boldsymbol{\theta}|data) &= \prod_{i=1}^{n} \left[\frac{1}{\nu t_{i}} \phi \left(\frac{\log \left(t_{i} \right) - \mu_{\sigma_{M_{i}}} \left(A, B \right)}{\nu} \right) \right]^{(1-\delta_{i})} \\ &\times \left[1 - \Phi \left(\frac{\log \left(t_{i} \right) - \mu_{\sigma_{M_{i}}} \left(A, B \right)}{\nu} \right) \right]^{\delta_{i}}, \end{split}$$

where δ_i is the censoring indicator.

• The log-likelihood function is

$$\mathcal{I}\left(oldsymbol{ heta}| extsf{data}
ight) = \sum_{i=1}^{n} \left(1-\delta_{i}
ight) \left[-\log
u - \log t_{i} + \log \phi\left(z_{i}
ight)
ight] + \delta_{i} \log\left[1-\Phi\left(z_{i}
ight)
ight],$$

where $z_i = \left[\log (t_i) - \mu_{\sigma_{M_i}} (A, B) \right] / \nu$.

Asymptotic variance

The Fisher information matrix is

$$I(\boldsymbol{\theta}) = \mathsf{E}\left[-\frac{\partial^2 I(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right]$$

- The estimator of logarithm of the *p* quantile at stress *s* is $\log(\hat{\xi}_{p,s}) = \mu_s(\hat{A}, \hat{B}) + z_p\hat{\nu}$, where \hat{A}, \hat{B} , and $\hat{\nu}$ are estimators of *A*, *B*, and ν .
- The large-sample asymptotic variance of log $(\hat{\xi}_{p,u_k})$ at use condition u_k is derived as

$$\operatorname{AVar}\left\{\log\left(\hat{\xi}_{p,u_{k}}\right)\right\} = \boldsymbol{c}_{\boldsymbol{k}}\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\boldsymbol{c}_{\boldsymbol{k}}',$$

where $\boldsymbol{c_k} = \left[rac{\partial \mu_{u_k}(A,B)}{\partial A}, rac{\partial \mu_{u_k}(A,B)}{\partial B}, z_{\rho}
ight]$ and $\Sigma_{\boldsymbol{\theta}} = I^{-1}(\boldsymbol{\theta})$.

Distribution profile of use stress levels

The weighted sum of the large-sample asymptotic variance of the estimator of the p quantile of the lifetime distribution at a vector of specified use levels can be expressed as

$$\operatorname{AVar}\left\{\log\left(\hat{\xi}_{p,use}\right)\right\} = \sum_{k=1}^{K} w_k \operatorname{AVar}\left\{\log\left(\hat{\xi}_{p,u_k}\right)\right\},$$

where w_k is the weight of the use level u_k and $\sum_{k=1}^{K} w_k = 1$.

Stress level

- A fatigue test contains S stress levels.
- Let $q_i = \sigma_{M_i} / \sigma_u$ and subject to $q_i \in [q_L, q_U]$, where i = 1, ..., S, q_L and q_U are the lower and upper bounds for stress levels.
- King et al. (2016) have discussed the optimum design on fatigue testings for composite material.
 - The results are obtained by minimizing AVar $\left\{ \log \left(\hat{\xi}_{\rho,use} \right) \right\}$ under the assumption that values of true parameters are known.
 - The optimum design always ends up with a lower and a higher stress levels.

Difficulty

- Traditional optimum designs
 - Depending on values of parameters
 - Assume true values of parameters are known
 - Treat maximum likelihood (ML) estimators as the true values
 - Unreliable inference based on ML estimators for small sample size
- Limits of experiments
 - Experiments are time-consuming and costly
 - The number of samples can be tested at a time are limited
- (Sequential) Bayesian designs
 - Allow prior knowledge to be used in design
 - Deal with difficulties of traditional optimum designs
 - D-optimality (Dror and Steinberg, 2008; Roy et al., 2009; Zhu et al., 2014)

Bayesian test planning

• Bayesian D-optimality design (Chaloner and Verdinelli, 1995):

$$\eta^{*} = \arg \max_{\eta} \int_{\mathbf{\Theta}} \log \det \left(I\left(oldsymbol{ heta}, \eta
ight)
ight) \pi \left(oldsymbol{ heta}
ight) d oldsymbol{ heta},$$

- η is all possible designs, η^* is the optimum design.
- $I(\theta, \eta)$ is the Fisher information matrix of θ for the design η .
- $\pi(\theta)$ is the prior distribution of θ .
- Sequential Bayesian D-optimality design (Roy et al., 2009):

$$q_{D,n+1}^{*} = \arg \max_{q} \int_{\Theta} \log \det \left(\sum_{i=1}^{n} I(\theta, q_{i}) + I(\theta, q) \right) \pi(\theta | \mathbf{q}_{n}, \mathbf{t}_{n}) d\theta.$$

- $I(\theta, q)$ is the Fisher information matrix for the stress level q.
- $\pi(\theta|\mathbf{q}_n, \mathbf{t}_n)$ is the posterior distribution for θ given currently available data.

- For reliability analysts, it is important to obtain a precise prediction of a product's lifetime.
- The objective function is written as

$$\phi_n(q) = \int_{\Theta} V(q, \theta) \pi(\theta | \mathbf{q}_n, \mathbf{t}_n) d\theta,$$

where
$$V(q, \theta) = \left[\sum_{k=1}^{K} w_k \boldsymbol{c_k} \Sigma_{\theta}(q) \boldsymbol{c_k}^{T}\right]$$
 and
 $\Sigma_{\theta}(q) = \left[\sum_{i=1}^{n} I(\theta, q_i) + I(\theta, q)\right]^{-1}$.

• The optimum $(n+1)^{th}$ design is

$$q_{\mathcal{C},n+1}^{*} = \arg\min_{q\in[q_{m},q_{M}]}\phi_{n}\left(q
ight).$$

Algorithm

Step 1: MCMC draws, $\theta_n^{(j)}$, based on *n* observations (current data)

Step 2: evaluate the asymptotic variance of each draw for possible designs

Possible design (q)	$\boldsymbol{ heta}_n^{(1)}$,···	$\boldsymbol{\theta}_{n}^{(J)}$	Average
q_L	$V\left(q_L, \boldsymbol{\theta}_n^{(1)}\right)$		$V\left(q_L, \boldsymbol{\theta}_n^{(J)}\right)$	$\phi_n(q_L)$
:	:	,···	:	:
q _U	$V\left(q_{U}, \boldsymbol{\theta}_{n}^{(1)}\right)$,	$V\left(q_{U}, \boldsymbol{\theta}_{n}^{(J)}\right)$	$\phi_n(q_U)$

 $q_{C,n+1}^{*} = \arg\min\{\phi_{n}\left(q_{L}
ight),...,\phi_{n}\left(q_{U}
ight)\}$

Step 3: Add a new lifetime data under stress level $q^*_{C,n+1}$ from true distribution into current data

- The controlled settings are R = 0.1, $\alpha = 0$, and $\sigma_u = 1339.67$ MPa.
- Epaarachchi and Clausen (2003) provided the fitted values of A and B for different materials under different experimental settings.
- Assume the prior distributions are A \sim Unif(0,0.1), B \sim Unif(0,1), and $\nu^2 \sim$ Inv.Gamma(4.5,3).
- MCMC method and the Metropolis-Hastings algorithm are used to simulate the Markov chains.

	Â	Ê	ŵ
ML estimators	0.0157	0.3188	0.7259
Bayesian estimators	0.0145	0.3444	0.8413

• True values of parameters are set as $\hat{\theta}_0 = (0.0157, 0.3188, 0.7259).$

Proposed sequential Bayesian design

Let $q_L = 0.35$ and $q_U = 0.75$, and 12 new optimal design points are determined sequentially.

- The optimum stress levels can be divided into two groups: higher and lower levels.
- The proportion of higher and lower levels are 0.36 and 0.64.

Accurate estimation for small sample size?

Maximum likelihood estimators

	Â	Ê	ν		
$\hat{oldsymbol{ heta}}_0$	0.0157	0.3188	0.7259		
$\hat{oldsymbol{ heta}}_1$	0.0005	0.7429	0.1658		
$\hat{\boldsymbol{\theta}}_2$	0.0162	0.3333	0.4044	 	

21 / 27

Comparison I

Assume the historical data is subdata 1 or subdata 2, and compare to the **two-level optimum design** (TOD, King et al. 2016).

Design	Stress levels	Sample size allocation
TOD based on $\hat{ heta}_0$	(0.35, 0.75)	(8, 4)
TOD based on $\hat{oldsymbol{ heta}}_1$	(0.65, 0.75)	(11, 1)
TOD based on $\hat{ heta}_2$	(0.35, 0.75)	(8, 4)

mean(AVar)	Subdata 1	Subdata 2
TOD by $\hat{oldsymbol{ heta}}_0$	0.6236	0.4276
Sequential Bayesian design	0.7663	0.7170
TOD by ML estimators	4.0337	0.4240

Sample size allocation

Average of sample size allocaiton

Subdata 2

Comparison II

- Randomly taking 3 observations as the historical data, determine the traditional optimal design based on its ML estimators and the sequential Bayesion design (SBD).
- There are 165 combinations chosen in the simulation study.

24 / 27

Sample size allocation

Average of sample size allocaiton

In sequential Bayesian designs,

- The optimal sequential Bayesian designs make new design points to either higher or lower stress levels.
- The sample size allocation is similar to the traditional two-level optimal design under the true values.
- The proposed method is more robust for small sample size.

Future research:

- Roy et al. (2009) proved the sequential Bayesian D-optimal design converges to the local D-optimal design for binary data.
- What are convergence properties of sequential Bayesian design for life test planning?

- Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. *Statistical Science*, pages 273–304.
- Dror, H. A. and Steinberg, D. M. (2008). Sequential experimental designs for generalized linear models. *Journal of the American Statistical Association*, 103(481):288–298.
- Epaarachchi, J. A. and Clausen, P. D. (2003). An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies. *Composites Part A: Applied science and manufacturing*, 34(4):313–326.
- King, C., Hong, Y., DeHart, S. P., DeFeo, P. A., and Pan, R. (2016). Planning fatigue tests for polymer composites. *Journal of Quality Technology (tentatively accepted)*.
- Roy, A., Ghosal, S., and Rosenberger, W. F. (2009). Convergence properties of sequential bayesian d-optimal designs. *Journal of Statistical Planning and Inference*, 139(2):425–440.
- Zhu, L., Dasgupta, T., and Huang, Q. (2014). A D-optimal design for estimation of parameters of an exponential-linear growth curve of nanostructures. *Technometrics*, 56(4):432–442.