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Polymer composites

@ A composite is any material made of more than one component with
different physical or chemical properties.

@ Polymer composites are made from polymers or from polymers along
with other kinds of materials.

o Light weight, high strength, and long-term durability

@ Wind turbine blades and aircraft are usually made of polymer
composites.
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Fatigue tests for polymer composites

@ The majority of testing is in accordance with the current standards
provided in ASTM E739.

@ The most common form of fatigue testing is cyclic constant
amplitude fatigue testing.

e Fatigue occurs when the material is subject to varying levels of stress
over a period of time.
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Constant amplitude fatigue testing
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@ One main goal of fatigue test is to demonstrate that a p proportion of
the materials can last a certain number of cycles under the use stress
level.

o |t is related to the prediction of the quantile of the cycles to failure
distribution at use condition.

@ The objective of this talk is to develop a sequential test planning
strategy to polymer composites fatigue testing.



Relationship between cycles and stress levels
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Epaarachchi and Clausen (2003) proposed the relationship as

o= o (8) (25 2) ()" o)

A is environmental effects on the material fatigue.

B is effects from the material itself.

om and o, are the maximum and minimum strength during the test.

f is the frequency of the cyclic testing.
R —co<R<1

¢(R):{1

5 l<R<oo

, where R = op/om.

v (a) = 1.6 — ¢ |sin ()] is a function of the smallest angle .



Statistical model for cycles to failure
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Assume the fatigue data are generated from the log-location-scale family
of distributions, e.g., lognormal and the Weibull distribution.



Statistical model for cycles to failure

@ The log-location-scale family is used to describe the cycles to failure

(T;). Thatis,
F(t) = & (lOg(ti) — How, (A, B)) '

v

o The location parameter is g, (A, B) = N(owm,).
@ The scale parameter is v.
@ The unknown parameters are 8 = (A, B, v).
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Likelihood function

@ The likelihood function is

L (6|data) = H [Vlt¢ ('Og(tf) - ZUM(_ (A, B))]O&-)
i= X [1 o <|og(t,-) ~ oy, (A, B)ﬂ&i’

where §; is the censoring indicator.
@ The log-likelihood function is

/(6ldata) = Y (1~ 67) [ log v — log ; +log & (2)] + &/ log [1 ~ @ ()]

where z; = [log (t;) — How, (A B)]/v.
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Asymptotic variance

@ The Fisher information matrix is

_02/(0)].

10)=E { 9600’

@ The estimator of logarithm of the p quantile at stress s is
log (ép,s) = Us </A4, B) + z,0, where A, B, and ¥ are estimators of A, B,
and v.

@ The large-sample asymptotic variance of log (fp,uk) at use condition uy is

derived as .
AVar {Iog (§p7uk>} = cXock',
where ¢, = 8””“6&4’8), auu’é(;’B),Zp} and Xg = j-1 (0)
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Distribution profile of use stress levels
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The weighted sum of the large-sample asymptotic variance of the
estimator of the p quantile of the lifetime distribution at a vector of

specified use levels can be expressed as

AVar {Iog (ép#se)} = EK: wiAVar {log (ép,uk)} )

k=1

where wy is the weight of the use level vy and Z,’le wi = 1.



Traditional optimum design

@ Stress level

o A fatigue test contains S stress levels.
o Let g; = opm. /o, and subject to q; € [q1, qu], where i =1,..., S, g, and
qu are the lower and upper bounds for stress levels.

e King et al. (2016) have discussed the optimum design on fatigue
testings for composite material.

o The results are obtained by minimizing AVar {Iog (ép,use)} under the

assumption that values of true parameters are known.
e The optimum design always ends up with a lower and a higher stress
levels.
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Difficulty

o Traditional optimum designs
o Depending on values of parameters
o Assume true values of parameters are known
e Treat maximum likelihood (ML) estimators as the true values
o Unreliable inference based on ML estimators for small sample size

@ Limits of experiments

e Experiments are time-consuming and costly
e The number of samples can be tested at a time are limited

@ (Sequential) Bayesian designs
o Allow prior knowledge to be used in design
o Deal with difficulties of traditional optimum designs
o D-optimality (Dror and Steinberg, 2008; Roy et al., 2009; Zhu et al.,
2014)
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Bayesian test planning

@ Bayesian D-optimality design (Chaloner and Verdinelli, 1995):

n* = arg max/ log det (/(0,n)) 7 (0)de,
nJe

e 7 is all possible designs, n* is the optimum design.
o 1(0,n) is the Fisher information matrix of @ for the design 7.
o 7(0) is the prior distribution of 6.

@ Sequential Bayesian D-optimality design (Roy et al., 2009):

* —
qD,n41 = arg max /
q (C]

log det (i/(& qi) +1(6, q)) 7 (0]a,,tn)d6.

i=1

e 1(0,q) is the Fisher information matrix for the stress level g.
o 7(0|qn,t,) is the posterior distribution for @ given currently available
data.
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C-optimality

@ For reliability analysts, it is important to obtain a precise prediction of
a product’s lifetime.

@ The objective function is written as
6n(@) = | V(9.0)7 (Blan.t.) db.

where V (q,0) = [Zle Wik (q) CkT} and

Yo (q) = [X11/(6.a) +1(6,9)] "
o The optimum (n + 1) design is

GCni1 =2rg _min  $n(q).
q€[am,am]
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Algorithm

Step 1: MCMC draws, 95,”, based on n observations (current data)

A . B v

Step 2: evaluate the asymptotic variance of each draw for possible designs

P055|bl(|;)de5|gn 99) . BErJ) Average
@ V@) | o [vE#)| e
@ | V@) | V()] éa(a)

q?f,n+1 = arg min{¢n (qL) 3 ey ¢n (QU)}

Step 3: Add a new lifetime data under stress level qz‘;,nﬂ from true distribution into
current data
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Example revisited

@ The controlled settings are R =0.1, « =0, and o, = 1339.67 MPa.

@ Epaarachchi and Clausen (2003) provided the fitted values of A and B for
different materials under different experimental settings.

@ Assume the prior distributions are A ~Unif(0,0.1), B ~Unif(0,1), and v? ~
Inv.Gamma(4.5, 3).

@ MCMC method and the Metropolis-Hastings algorithm are used to simulate
the Markov chains.

A B v
ML estimators 0.0157 0.3188 0.7259
Bayesian estimators  0.0145  0.3444 0.8413

@ True values of parameters are set as 6y = (0.0157,0.3188, 0.7259).
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Proposed sequential Bayesian design

Let g, = 0.35 and gy = 0.75, and 12 new optimal design points are
determined sequentially.
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@ The optimum stress levels can be divided into two groups: higher and
lower levels.

@ The proportion of higher and lower levels are 0.36 and 0.64.
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Accurate estimation for small sample size?
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Comparison |

Assume the historical data is subdata 1 or subdata 2, and compare to the
two-level optimum design (TOD, King et al. 2016).

Design Stress levels ~ Sample size allocation
TOD based on 8, (0.35, 0.75) (8, 4)
TOD based on 8, (0.65,0.75) (11,1)
TOD based on 6,  (0.35, 0.75) (8, 4)
mean(AVar) Subdata 1 ~ Subdata 2
TOD by 6, 0.6236 0.4276
Sequential Bayesian design 0.7663 0.7170

TOD by ML estimators 4.0337 0.4240
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Sample size allocation
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Comparison Il

o Randomly taking 3 observations as the historical data, determine the
traditional optimal design based on its ML estimators and the
sequential Bayesion design (SBD).

@ There are 165 combinations chosen in the simulation study.
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Sample size allocation
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Conclusion and Future Research

In sequential Bayesian designs,

@ The optimal sequential Bayesian designs make new design points to
either higher or lower stress levels.

@ The sample size allocation is similar to the traditional two-level
optimal design under the true values.

@ The proposed method is more robust for small sample size.
Future research:

@ Roy et al. (2009) proved the sequential Bayesian D-optimal design
converges to the local D-optimal design for binary data.

@ What are convergence properties of sequential Bayesian design for life
test planning?
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