Fall Technical Conference Statistics & Quality: Riding the Big Data Wave

October 3 - 5, 2018 | West Palm Beach, FL

A Recommended Set of Indices for Evaluating Process Health

KEVIN WHITE JOHN SZARKA WILLIS JENSEN

ΕΛSTΜΛΝ

Fall Technical Conference Statistics: Powering a Revolution in Quality Improvement October 4 - 6, 2017 | Philadelphia, PA

Stability Assessment with the Stability Index

JOHN SZARKA WILLIS JENSEN KEVIN WHITE

The ultimate process goal

Processes are meeting customer needs (based on specifications), stable, and on-target with minimum variation and an adequate measurement system

Problem statement

A quality or manufacturing manager oversees multiple processes and wants to evaluate the process health to identify areas for improvement

In light of the ultimate process goal...

- What set of indices is best to assess performance?
- How can these indices be used to quickly evaluate many processes?
- Can these indices provide clues to the type of improvement needed?

 P_{pk} is a good indicator of actual process performance compared to specifications because it considers the long-term variability and the process average.

Three reasons for an unhealthy process

Stable?

The Stability Index (SI) is the ratio of the long-term standard deviation to the short-term standard deviation

$$SI = \frac{\sigma_{LT}}{\sigma_{ST}} = \frac{C_{pk}}{P_{pk}} = \frac{C_p}{P_p}$$

Rule of Thumb	SI
Adequate	<1.25
Marginal	1.25-1.50
Poor	>1.50

The Target Index (TI) is the number of short-term standard deviations the process average is from target

Common cause capable?

C_p is a good indicator of potential process performance because it only considers the short-term variability due to common cause

$$C_p = \frac{USL - LSL}{6\sigma_{ST}}$$
Rule of Thumb Adequate
>1.33
Marginal
1.00-1.33
Poor
<1.00

Three reasons for an unhealthy process

Actual Process Performance (P_{pk}) Stability Index (SI) – work on special causes

Target Index (TI) – move process to target

Potential Capability (C_p) – reduce common cause variation

Connecting to process capability and performance indices

Example

17 quality measures to evaluate the process health Where are the biggest improvement opportunities? What type of improvement is required?

Summary report

	Variability						
	Stability	Within	Overall	Summary	Capability		oility
Column	Index	Sigma	Sigma	Mean	Ppk ^	Ср	Target Index
y17	0.99	0.30652	0.30301	2.01262	0.454	0.870	1.264
y08	1.20	0.28977	0.3488	1.95288	0.576	0.748	0.163
y16	3.02	0.63253	1.91214	38.7377	0.652	2.108	0.415
y11	1.70	12.0155	20.4724	61.2177	0.671	1.387	0.731
y03	1.00	0.96173	0.95735	16.5268	0.880	1.386	1.532
y06	1.05	1.31126	1.38092	49.8942	0.940	1.017	0.081
y02	0.98	0.99252	0.97137	70.1302	1.156	1.175	0.131
y10	1.38	2.65564	3.65867	28.6505	1.490	2.510	1.375
y12	1.44	1.95919	2.81774	1.15858	1.637	2.552	0.591
y05	1.00	0.99995	0.99901	70.0519	1.651	1.667	0.052
y04	0.98	0.09922	0.09771	0.80836	2.075	2.688	1.931
y09	1.32	3.82862	5.05307	37.7919	2.125	3.047	0.729
y07	1.11	0.31858	0.35347	9.9691	2.328	2.616	0.097
y14	1.05	0.00491	0.00514	0.0498	2.581	2.716	0.042
y15	2.94	1.16829	3.43357	82.328	2.686	8.560	1.993
y13	0.95	27.3877	25.9691	223.573	2.778	2.678	0.130
y01	1.04	0.1974	0.20598	97.9951	3.229	3.377	0.025

Process performance graph

4D process performance graph

4D process performance graph

What about the measurement system?

When the process is not capable ($C_p < 1.33$), a frequent next step is to understand how much of the variability is due to the measurement system

$$\sigma_t^2 = \sigma_p^2 + \sigma_{ms}^2$$

- σ_t observed standard deviation
- $\sigma_p \text{process standard deviation}$
- σ_{ms} measurement system standard deviation

Percent of variation due to the measurement system

$$\% MS = \frac{\sigma_{ms}^2}{\sigma_t^2} x100$$

What should we use for σ_t ? σ_{sT} or σ_{LT} ?

$$\% MS = \frac{\sigma_{ms}^2}{\sigma_{ST}^2} x100$$

Percent of the short-term (common cause) variability due to the measurement system

Impact of measurement on capability

How good could the process be if there was no measurement variability?

$$C_{p*} = \frac{USL - LSL}{6\sigma_p} = \frac{C_p}{\sqrt{1 - \frac{\%MS}{100}}}$$

When there is a "large" difference between C_p and C_{p*} , it indicates there is an opportunity to work on the measurement system

Connecting to process capability and performance indices

Process potential graph

Process potential graph

Process potential graph

Example continued

In the earlier example, there were four quality measures with a C_p <1.33

	1	Variability								
	Stability	Within	Overall	Summary	Capability					
Column	Index	Sigma	Sigma	Mean	Ppk	Ср ^	Target Index	%MS	Ср*	Ср**
y08	1.20	0.28977	0.3488	1.95288	0.576	0.748	0.163	50	1.06	1.06
y17	0.99	0.30652	0.30301	2.01262	0.454	0.870	1.264	12	0.93	2.51
y06	1.05	1.31126	1.38092	49.8942	0.940	1.017	0.081	63	1.67	1.28
y02	0.98	0.99252	0.97137	70.1302	1.156	1.175	0.131	33	1.44	2.05

Process potential graph

Special Cases

- Two-sided specification with an off-center target
- One-sided specification with a defined target
- One-sided specification without a defined target

LSL only
$$P_{pk} = P_{pl} = \frac{\bar{x} - LSL}{3\sigma_{LT}}$$

USL only $P_{pk} = P_{pu} = \frac{USL - \bar{x}}{3\sigma_{LT}}$

TI – not affected if target defined

Two-sided specification with an offcenter target

For C_p calculation, need to ensure that the common cause variability is sufficient for the minimum of USL-T or T-LSL

One-sided specification with a defined target

 $C_{\rm p}$ needs to consider the distance between T and LSL or USL and T.

One-sided specification without a defined target

If a target cannot be defined, use C_{pk} in place of TI and C_p . The process location effect and the short-term capability effect become "confounded" when there is not a defined target.

Special cases summary

Case	Actual Performance	Stability	Target	Potential Performance
Two-sided specs with centered target	P _{pk}	SI	TI	C _p
Two-sided specs with off-center target	P _{pk}	SI	TI	$C_p = \frac{min(USL - T, T - LSL)}{3\sigma_{ST}}$
One-sided specs with a defined target	P _{pl} or P _{pu}	SI	TI	$C_p = \frac{T - LSL}{3\sigma_{ST}} \text{ or } \frac{USL - T}{3\sigma_{ST}}$
One-sided specs without a defined target	P _{pl} or P _{pu}	SI	$C_{pl} =$	$= \frac{\bar{x} - LSL}{3\sigma_{ST}} \text{ or } C_{pu} = \frac{USL - \bar{x}}{3\sigma_{ST}}$

Conclusions / Take Home Message

The right set of process indices and graphs can quickly identify improvement opportunities as well as the type of improvement needed

For more information

Britt, K.A., Ramírez, B. and Mistretta, T. (2016). Process monitoring using statistical stability metrics: Applications to Biopharmaceutical Processes. *Quality Engineering*, 28(2), pp. 193-211.

Jensen, W., Szarka, J. and White, K. (2018). Stability assessment with the stability index. *Quality Engineering*, to appear.

Ramírez, J. G. (2016). A health screening for your processes. JMP Foreword, 11-12.

Sall, J. (2018) Scaling up process characterization. *Quality Engineering*, 30(1) pp. 62-78 with discussion on pp. 79-93

Wheeler, D. J. (2006), EMP III Using Imperfect Data. Knoxville, TN: SPC Press

White, T.K. and Borror, C.M. (2011). Two-Dimensional guidelines for measurement system indices. *Quality and Reliability Engineering International*, 27(4), pp. 479-487.

Thank you

Questions?