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My Fulbright Trip to Argentina October, 2017

Studying off 

line quality 

control of 

wines in the 

Mendoza 

wine region 

with Lucia
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And now---for those with suspicious minds in 

this time of the “Me Two” movement…
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And now---for those with suspicious minds in 

this time of the “Me Two” movement…

My wife took that picture!
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Here we are in the Andies near Chilean border

Same trip
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Here we are in the Andies near Chilean border

My wife 

Maureen 

and two of 

our best 

friends
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Here we are in the Andies near Chilean border

Lucia and 

her sister 

and 

parents
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• In our first submission, we skipped this

• Editor: add a primer!!!

First, a little bit of optimal design theory
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• In our first submission, we skipped this

• Editor: add a primer!!!

First, a little bit of optimal design theory

So here we go ...
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• Standard linear model:

• X is n by p, b is p by 1, and the ith row of X is:

• So that the ith observation can be written:

• Assume constant error variance, and, WLOG: s2 = 1

Basic notation
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• An approximate design is a probability measure x on 

a design space c

• Design problem: Quadratic regression on c = [-1, 1], 

and we can take n = 16 runs

• Example design measure x: 

Place 1/3 weight at -1 16/3 = 5.333 runs

Place 1/3 weight at 0 16/3 = 5.333 runs

Place 1/3 weight at +1 16/3 = 5.333 runs

• Can only implement “approximately.”

What is an approximate design?
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• Information matrix:

• By Caratheodory’s theorem, any continuous 

measure can be discretized:

• So, we can focus on discrete probability measures

Information matrix of approximate design x
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• Approximate design x is given by the uniform 

probability measure on c = [-1, 1].

• Model is quadratic: fT(x) = (1, x, x2)

• The discrete design placing 5/18 weight at 

and 4/9 weight at 0 yields the same M

Discretization example
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• Assume n a positive integer and for x a discrete 

design measure on c.

• x a an exact n-point design if nx(x) is a positive 

integer

• Example:  n = 3 (or 6 or 9 or 12 …)

What is an exact design?



© no duplication without permission 16

• Assume n (not necessarily distinct) points x1,…xn.

• Information matrix is:

• Notation: Sets of possible designs

X = set of all approximate designs

Xn = set of all n-point exact designs

M matrix for exact design and some notation



© no duplication without permission 17

Definition: The D-optimal design maximizes the 

determinant of the information matrix:

Why D?  

• D-optimal designs minimize the volume of the 

confidence region for b.

• D-optimal designs best for estimation of b.

D-Optimal designs

(Approximate case)

(Exact case)
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D-optimal approximate design

|M| = 4/27

Variance of prediction 

Example:  Quadratic regression on c = [-1,1]
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• Normalized variance of prediction:

• Pick the design to minimize the maximum variance 

of prediction (G-optimality)

• Pick the design to minimize the average variance of 

prediction (I-optimality)

What if prediction is of primary interest?
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Example:  Quadratic regression on c = [-1,1]

G-optimal (minimax) design

Minimax v(x) = 3

Average v(x) = 2.4
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Wait!  That G-optimal design looked just like 

the D-optimal design
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The following conditions are equivalent:

1. x is D-optimal.

2.  x is G-optimal.

3.  

Kiefer-Wolfowitz Equivalence Theorem (1959)
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• D-optimal and G-optimal designs are not necessarily 

the same for finite n

• Fast algorithms exist for D-optimal designs

• Fast algorithms do not exist for G-optimal designs

K-W does NOT hold for exact designs
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D-optimal exchange algorithms

1. Generate a random starting design

2. Cycle through the n points in the design:

– For point i, find the point in the the design space x*, 

such that when x* is exchanged for xi, we get a 

maximal increase in the determinant.

3. Repeat step 2 until no further improvements

OK, so why is G-optimality hard?

An optimization over c is required for every design 

point -- function to be evaluated is the determinant
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G-optimal exchange algorithms

1. Generate a random starting design

2. Cycle through the n points in the design:

– For point i, find the point in the the design space x*, 

such that when x* is exchanged for xi, we get a 

maximal decrease in the maximum variance.

3. Repeat step 2 until no further improvements

OK, so why is G-optimality hard?

An optimization over c is required for every design 

point – but to evaluate the criterion must do another 

maximization of the variance function
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Now, let’s beat a dead dog:

Coordinate exchange is really bad with G-optimality.  

1) The criterion is the maximum variance over the 

design space.  Algorithms that attempt to do 

minimax are very expensive!!!!

2) The algorithm fails regularly to find the global 

optimum.  
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Example:  Quadratic regression, n = 6

We know the G-optimal design places two observations at the 
each of the endpoints and two at the center.

Consider this starting design:

-1    -.4   0   0   .4   1

Seems clear we want to move .4 to 1 and -.4 to -1.  
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When you try to change the -.4 coordinate, you can’t
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When you try to change the 0 coordinate, your best 
move is to change it to +/- 0.4…and then you’re stuck
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G-optimal algorithm success rates are bad using 
random starting designs

1. One factor, n = 6,  

86% success rate

2. Two factors, n = 9, 

0% success rate.  

Best design
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Example: Quadratic regression on c = [-1,1]; l(x) uniform

Il-optimal (minimum average variance) Design

Minimax v(x) = 4

Average v(x) = 2.133
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Superimpose G and Il optimal variance 

functions

What if we 

increased l(x) near 

the boundaries 

and reduced it in 

the center?
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Superimpose G and Il optimal variance 

functions

What if we 

increased l(x) near 

the boundaries 

and reduced it in 

the center?
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Superimpose G and Il optimal variance 

functions

What if we 

increased l(x) near 

the boundaries 

and reduced it in 

the center?

That should bring 

down the 

maximum variance 

of prediction at the 

boundaries
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Can a clever choice of the weight function l yield:

If so, we can use standard, fast exchange algorithms 

(with no minimax search) to find the G-optimal design

Research Question
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Try l(x) = beta density on [-1,1]

Blue guy has a = b < 1, 

bathtub shape—what 

we want
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Find a = b so that designs are the same 

a = 1 a* = 0.315
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Find a = b so that designs are the same 

a = 1 a* = 0.315

Bingo!!! Il-optimal 

design is G-optimal
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• Need multidimensional gamma density for weight 

function

• Assume independence, product of gammas?

OK, how about more factors
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• Need multidimensional gamma density for weight 

function

• Assume independence, product of gammas?

OK, how about more factors

Failure!  Dead end.  

Abandon ship..
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• Need multidimensional gamma density for weight 

function

• Assume independence, product of gammas?

OK, how about more factors

Failure!  Dead end.  

Abandon ship..

Lucia was sad
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• Think about the Il criterion:

where:

• Only purpose of the l density is to produce W

• So skip choosing l – try choosing W directly

But wait!
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But W has p(p+1)/2 entries---daunting?
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But W has p(p+1)/2 - 1 entries---daunting?
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But W has p(p+1)/2 - 1 entries---daunting?

All we know is that -1 ≤ wi ≤ 1 
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W-entries for full quadratic—Yes, daunting
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I need to find the W matrix that leads the Il-optimality 

(coord exch) algorithm to find the minimax design

1. Fix W 

2. Now use coordinate exchange to find xn|W. 

– This is (pretty) FAST

3. OK, now evaluate xn|W using the minimax criterion

– This is SLOW

4. Change W (move toward optimality), go to 2.

Why is this a problem?

This is a minimax algorithm in W
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I need to find the W matrix that leads the Il-optimality 

(coord exch) algorithm to find the minimax design

1. Fix W 

2. Now use coordinate exchange to find xn|W. 

– This is (pretty) FAST

3. OK, now evaluate xn|W using the minimax criterion

– This is SLOW

4. Change W (move toward optimality), go to 2.

Why is this a problem?

NOOOOOO!!
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Little Theorem (Nachtsheim, 1979).

Let xG(D) denote the G(D)-optimal design for model f in 

design space c, and let xl denote the Il-optimal design.  

Then:

Is there a way to guess at W* in advance?
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Little Theorem (Nachtsheim, 1979).

Let xG(D) denote the G(D)-optimal design for model f in 

design space c, and let xl denote the Il-optimal design.  

Then:

Translated:  Use the approximate G(D)-optimal design 

as the weight function l.  Then the Il-optimal design is 

the G(D)-optimal design

Is there a way to guess at W* in advance?
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Really good guess for the optimal W:

That is: a really good guess at the best W, is the 

information matrix for the G(D)-optimal design!

Implication:
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• But we still have the dimensionality problem, no?

• Well, turns out that goes away too!

• Why?  The information matrix for the G(D)-optimal 

designs for full second-order models have only two 

unique values, w1 and w2

• Upshot:  Dimensionality in W is 2!

OK, we have a starting value for W
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Example: Two-factor RSM model
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Example: Two-factor RSM model
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Example: Two-factor RSM model
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Amazingly, this is always true
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From Atkinson, Donev, Tobias Optimal Design 

Book (2007)
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• At least for number of factors up to five.  We haven’t 

looked further 

Amazingly, this is always true
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1. Obtain the approximate G(D)-optimal design, its 

information matrix, and the two starting w values

2. Use the coordinate exchange algorithm to find the 

optimal w1 and w2 values in a neighborhood of the 

starting values

1. To evaluate w1 and w2, obtain the Il-optimal design 

given W and evaluate the maximum variance

2. If the new maxvar is less than the best maxvar found, 

save the new maxvar and the new w1 and w2 values, 

and continue with the coordinate exchange algorithm 

on the w values until convergence

Finally, the algorithm
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The “neighborhood” of w1 and w2 values
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• We use D = 0.1

The “neighborhood” of w1 and w2 values

w1

w2

1

0
0 1
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We have to do a 2D minimax search over a small space

• We might predict that the standard G-optimal 

algorithm based on the coordinate exchange will do 

better in one and two dimensions.

• But for three or more factors, this algorithm should  

be better

Performance
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1. Genetic programming

– Borkowski, J. J. (2003). “Using a genetic algorithm to 

generate small exact response surface designs”. 

Journal of Probability and Statistical Science 1(1), 65–

88.

2.  Standard minimax coordinate exchange algorithm 

– Rodriguez, M., Jones, B., Borror, C. M. and 

Montgomery, D. C. (2010). “Generating and assessing 

exact G-optimal designs.” Journal of Quality 

Technology 42(1), 1–18.

Competitors (But only consider 1 – 3 factors)
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1. John Borkowski’s paper was first, and well done.

2. Identified the following test problems

3. Found some very good designs (tough to beat)

Borkowski (2003): Genetic Algorithm (GA)

Factors
1 3 4 5 6 7 8 9
2 6 7 8 9 10 11 12
3 10 11 12 13 14 15 16

Run	sizes	(n)
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1. John Borkowski’s paper was first, and well done.

2. Identified the following test problems

3. Found some very good designs (tough to beat)

4. Takes forever!

Borkowski (2003): Genetic Algorithm (GA)

Factors
1 3 4 5 6 7 8 9
2 6 7 8 9 10 11 12
3 10 11 12 13 14 15 16

Run	sizes	(n)
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• Used standard coordinate exchange where the 

objective is to minimize the maximum variance

• Used same test problems

• Mixed results – but did find a design or two that was 

better than the GP designs

• Faster than GP

Rodriguez, Jones, Borror, Montgomery
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Comparisons: Quality of Design

Efficiencies of our designs relative to G-CEXCH and GA
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Comparisons: Efficiency of Design

Efficiencies of our designs relative to G-CEXCH and GA

G-CEXCH and 

GA comparable

G-CEXCH and 

GA comparable

We’re now beating G-

CEXCH, sometimes GA
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But these results are undersell our designs --

Consider the FDS plots – here 2D examples
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FDS plots – 3D Examples
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Now consider relative computing time

One factor:

Best: G-CEXCH

Good: G-Il (us)

Bad!: GA

Two factors:

Best: G-Il (us)

Good: G-CEXCH

Bad!!: GA

Three factors:

Best: G-Il (us)

Good: G-CEXCH

BAD!!!: GA
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• G-CEXCH: Forget it 

– Predicted time for five factors: 166 days 

• GA: Forget it

– Predicted time for five factors: Hell freezes over

• Our algorithm:  not a problem

What about four and five factors?
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• G-CEXCH: Forget it 

– Predicted time for five factors: 166 days 

• GA: Forget it

– Predicted time for five factors: Hell freezes over

• Our algorithm:  not a problem, but still 24 hours for 

200 random starts---7 minutes per random start

What about four and five factors?
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Our G-optimal designs vs D-optimal designs
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• Developed a (relatively) fast algorithm for computing 

G-optimal designs for quadratic models

– Idea:  Choose the W (moment) matrix for I-optimality 

such that the solution is G-optimal

• Much to be done:

– Other models will present more complex W matrices

– That means more wi entries, more computing

– Similarly for irregular design spaces

– But--algorithm is linear in the number of wi entries

Conclusions
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• Compliments, congratulations:

– nacht001@umn.edu

• Criticisms, complaints:

– lucianhernandez@gmail.com

Thank you!

mailto:nacht001@umn.edu
mailto:lucianhernandez@gmail.com

