Fast Computation of Exact G-Optimal Designs Via I_{λ} -Optimality

Chris Nachtsheim Carlson School of Management University of Minnesota

Fall Technical Conference, West Palm Beach October 4, 2018

© no duplication without permission

1

Joint work with Lucia Hernandez:

Assistant Professor School of Economics and Statistics National University of Rosario Rosario, Argentina

- My former PhD student
- Carried out her dissertation research at Minnesota on Fulbright grant

My Fulbright Trip to Argentina October, 2017

Studying off line quality control of wines in the Mendoza wine region with Lucia

And now---for those with suspicious minds in this time of the "Me Two" movement...

And now---for those with suspicious minds in this time of the "Me Two" movement...

My wife took that picture!

Here we are in the Andies near Chilean border

Same trip

Here we are in the Andies near Chilean border

My wife Maureen and two of our best friends

Here we are in the Andies near Chilean border

Lucia and her sister and parents

First, a little bit of optimal design theory

- In our first submission, we skipped this
- Editor: add a primer!!!

First, a little bit of optimal design theory

- In our first submission, we skipped this
- Editor: add a primer!!!

So here we go ...

Basic notation

• Standard linear model:

$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{\epsilon}$$

• X is *n* by *p*, β is p by 1, and the ith row of X is:

$$\mathbf{f}'(\mathbf{x}_i)$$

• So that the ith observation can be written:

$$y_i = \mathbf{f}'(\mathbf{x}_i)\boldsymbol{\beta} + \boldsymbol{\epsilon}_i$$

• Assume constant error variance, and, WLOG: $\sigma^2 = 1$

11

What is an approximate design?

- An approximate design is a probability measure ξ on a design space χ
- Design problem: Quadratic regression on χ = [-1, 1], and we can take n = 16 runs
- Example design measure ξ:

Place 1/3 weight at -116/3 = 5.333 runsPlace 1/3 weight at 016/3 = 5.333 runsPlace 1/3 weight at +116/3 = 5.333 runs

Can only implement "approximately."

Information matrix of approximate design ξ

• Information matrix:

$$\mathbf{M}(\xi) = \int_{\chi} \mathbf{f}(\mathbf{x}) \mathbf{f}'(\mathbf{x}) d\xi(\mathbf{x})$$

By Caratheodory's theorem, any continuous measure can be discretized:

$$\mathbf{M}(\xi) = \sum_{i=1}^{s} \mathbf{f}(\mathbf{x_i}) \mathbf{f}'(\mathbf{x_i}) \xi(\mathbf{x_i})$$

• So, we can focus on discrete probability measures

Discretization example

- Approximate design ξ is given by the uniform probability measure on $\chi = [-1, 1]$.
- Model is quadratic: $f^{T}(x) = (1, x, x^{2})$

$$\mathbf{M}(\xi) = \int_{\mathcal{X}} \mathbf{f}(\mathbf{x}) \mathbf{f}'(\mathbf{x}) d\xi(\mathbf{x}) = \int_{-1}^{1} \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix} (1, x, x^2) f(x) dx$$
$$= \int_{-1}^{1} \begin{pmatrix} 1 & x & x^2 \\ x & x^2 & x^3 \\ x^2 & x^3 & x^4 \end{pmatrix} \frac{1}{2} dx = \begin{pmatrix} 1 & 0 & 1/3 \\ 0 & 1/3 & 0 \\ 1/3 & 0 & 1/5 \end{pmatrix}$$

• The discrete design placing 5/18 weight at $\pm \sqrt{3/5}$

and 4/9 weight at 0 yields the same M

What is an exact design?

- Assume n a positive integer and for ξ a discrete design measure on χ .
- ξ a an exact n-point design if $n\xi(x)$ is a positive integer $\forall x \in \chi$
- Example: n = 3 (or 6 or 9 or 12 ...)

x:
 -1
 0
 1

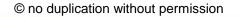
$$\xi_3(x)$$
:
 $\frac{1}{3}$
 $\frac{1}{3}$
 $\frac{1}{3}$

M matrix for exact design and some notation

- Assume n (not necessarily distinct) points x₁,...x_n.
- Information matrix is:

$$\mathbf{M}(\xi_n) = \sum_{i=1}^n \mathbf{f}(\mathbf{x}_i) \mathbf{f}'(\mathbf{x}_i) \frac{1}{n} = \mathbf{X}' \mathbf{X}/n$$

- Notation: Sets of possible designs
 - Ξ = set of all approximate designs
 - Ξ_n = set of all n-point exact designs



D-Optimal designs

Definition: The D-optimal design maximizes the determinant of the information matrix:

$$\xi^{D} = \arg \max_{\xi \in \Xi} |\mathbf{M}(\xi)|$$
 (Approximate case)
 $\xi^{D}_{n} = \arg \max_{\xi_{n} \in \Xi_{n}} |\mathbf{M}(\xi_{n})|$ (Exact case)

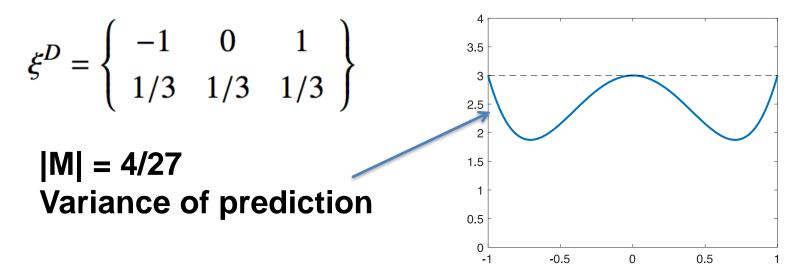
Why D?

- D-optimal designs minimize the volume of the confidence region for β .
- D-optimal designs best for estimation of β .

D-optimal approximate design

$$\xi^D = rg\max_{\xi\in\Xi} |\mathbf{M}(\xi)|$$

Example: Quadratic regression on $\chi = [-1, 1]$



What if prediction is of primary interest?

• Normalized variance of prediction:

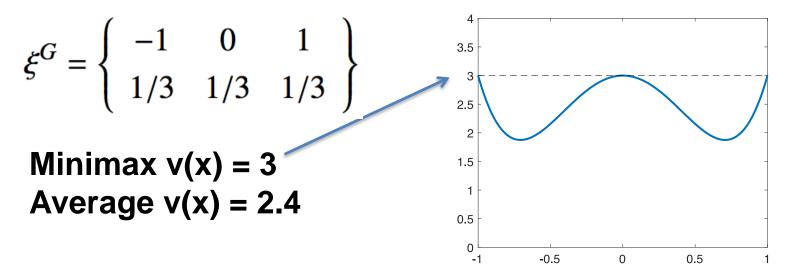
$$v(\mathbf{x}, \xi) = \begin{cases} \mathbf{f}'(\mathbf{x}) \mathbf{M}^{-1}(\xi) \mathbf{f}(\mathbf{x}) & \text{if } \mathbf{M}(\xi) \text{ is not singular} \\ \infty & \text{if } \mathbf{M}(\xi) \text{ is singular} \end{cases}$$

- Pick the design to minimize the maximum variance of prediction (G-optimality)
- Pick the design to minimize the average variance of prediction (I-optimality)

G-optimal (minimax) design

$$\xi^G = \arg\min_{\xi \in \Xi} \max_{\mathbf{x} \in \chi} v(\mathbf{x}, \xi)$$

Example: Quadratic regression on $\chi = [-1,1]$



Wait! That G-optimal design looked just like the D-optimal design

$$\xi^{D} = \left\{ \begin{array}{rrr} -1 & 0 & 1 \\ 1/3 & 1/3 & 1/3 \end{array} \right\}$$
$$\xi^{G} = \left\{ \begin{array}{rrr} -1 & 0 & 1 \\ 1/3 & 1/3 & 1/3 \end{array} \right\}$$

Kiefer-Wolfowitz Equivalence Theorem (1959)

The following conditions are equivalent:

- 1. ξ is D-optimal.
- **2.** ξ is G-optimal.
- 3. $\max_{\mathbf{x}\in\chi} v(\mathbf{x},\xi) = p$

K-W does NOT hold for exact designs

- D-optimal and G-optimal designs are not necessarily the same for finite n
- Fast algorithms exist for D-optimal designs
- Fast algorithms do not exist for G-optimal designs

OK, so why is G-optimality hard?

D-optimal exchange algorithms

- 1. Generate a random starting design
- 2. Cycle through the n points in the design:
 - For point i, find the point in the the design space x*, such that when x* is exchanged for x_i, we get a maximal increase in the determinant.
- 3. Repeat step 2 until no further improvements

An optimization over c is required for every design point -- function to be evaluated is the determinant

24

OK, so why is G-optimality hard?

G-optimal exchange algorithms

- 1. Generate a random starting design
- 2. Cycle through the n points in the design:
 - For point i, find the point in the the design space x*, such that when x* is exchanged for x_i, we get a maximal decrease in the maximum variance.
- 3. Repeat step 2 until no further improvements

An optimization over c is required for every design point – but to evaluate the criterion must do another maximization of the variance function

Now, let's beat a dead dog:

Coordinate exchange is really bad with G-optimality.

- 1) The criterion is the maximum variance over the design space. Algorithms that attempt to do minimax are very expensive!!!!
- 2) The algorithm fails regularly to find the global optimum.

Example: Quadratic regression, n = 6

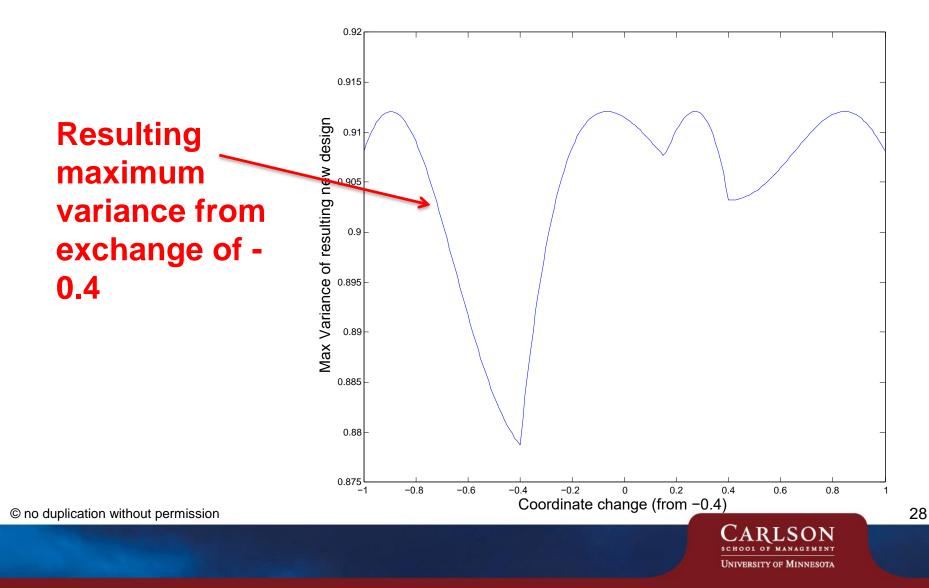
We know the G-optimal design places two observations at the each of the endpoints and two at the center.

Consider this starting design:

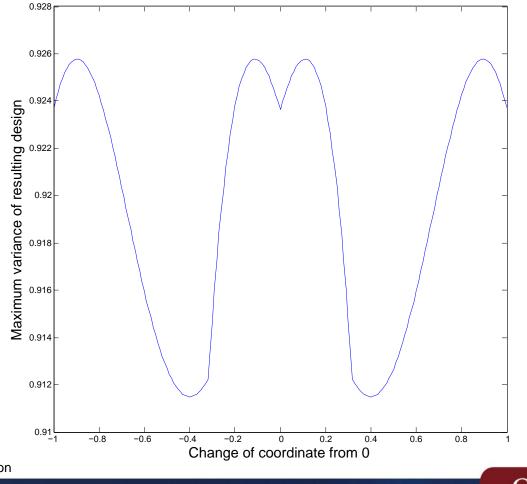
-1 -.4 0 0 .4 1

Seems clear we want to move .4 to 1 and -.4 to -1.

When you try to change the -.4 coordinate, you can't

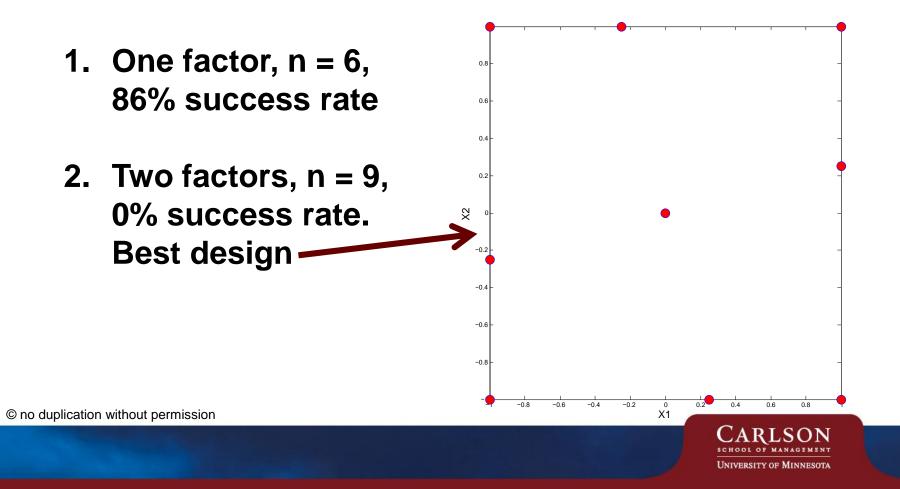


When you try to change the 0 coordinate, your best move is to change it to +/- 0.4...and then you're stuck



CARLSON SCHOOL OF MANAGEMENT UNIVERSITY OF MINNESOTA

G-optimal algorithm success rates are bad using random starting designs



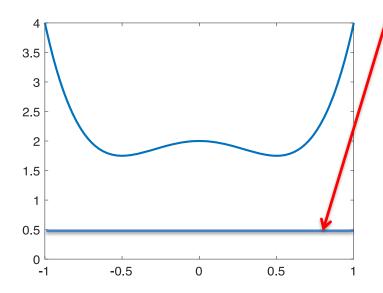
 I_{λ} -optimal (minimum average variance) Design

$$\xi^{I_{\lambda}} = rg\min_{\xi\in\Xi} \int_{\chi} v(\mathbf{x},\xi)\lambda(\mathbf{x})d\mathbf{x}$$

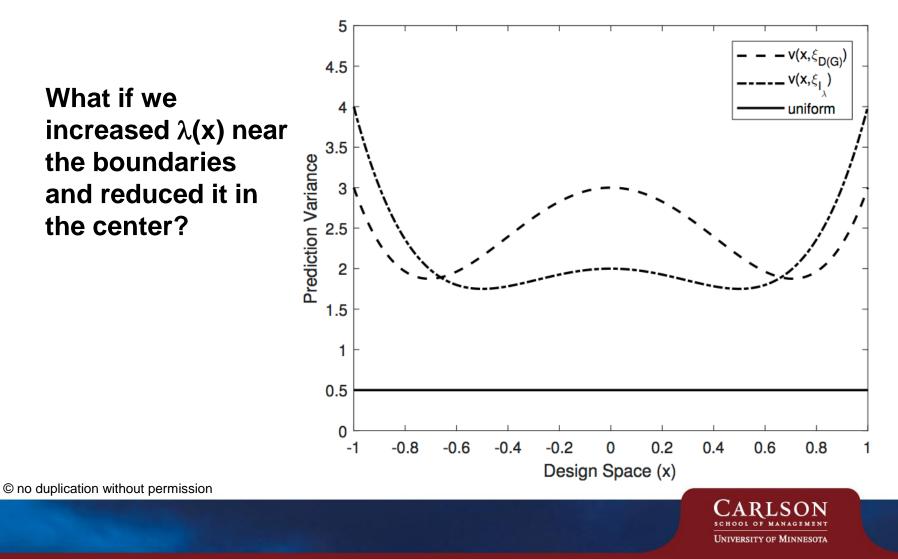
Example: Quadratic regression on $\chi = [-1,1]$; $\lambda(x)$ uniform

$$\xi^{I_{\lambda}} = \left\{ \begin{array}{rrr} -1 & 0 & 1 \\ 1/4 & 1/2 & 1/4 \end{array} \right\}$$

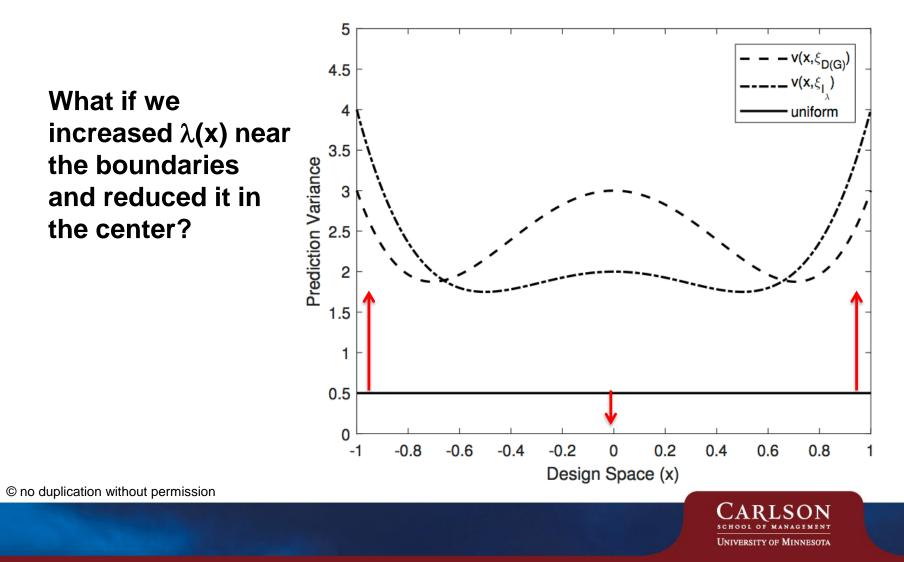
Minimax v(x) = 4Average v(x) = 2.133



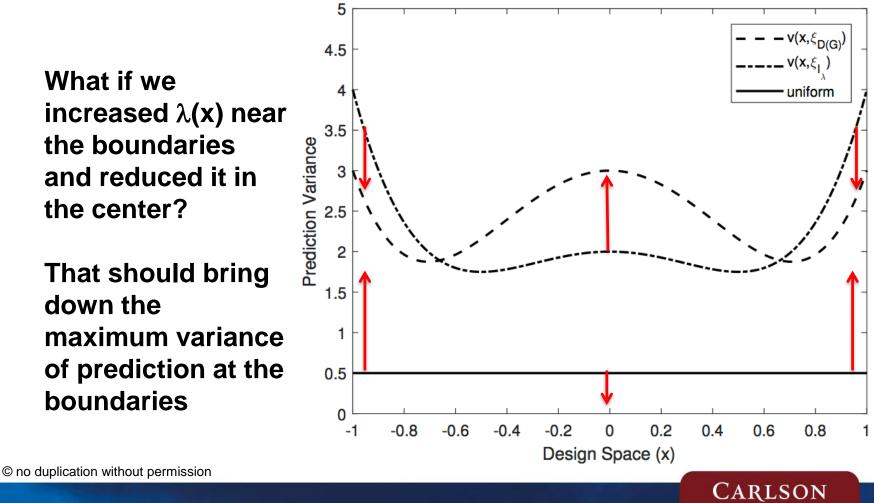
Superimpose G and I_{λ} optimal variance functions



Superimpose G and I_{λ} optimal variance functions



Superimpose G and I_{λ} optimal variance functions



34

UNIVERSITY OF MINNESOTA

Research Question

Can a clever choice of the weight function λ yield:

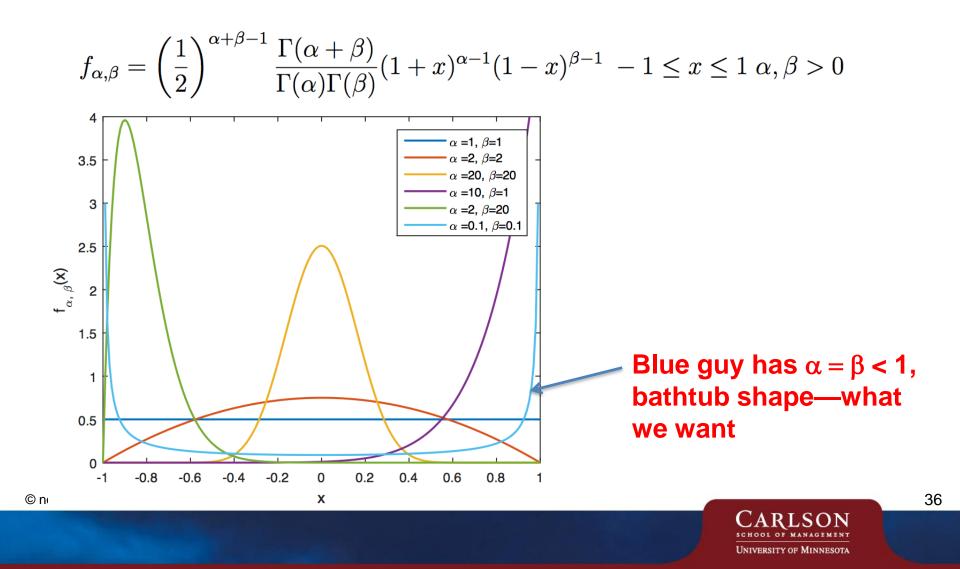
 $\xi^{G(D)} pprox \xi^{I_{\lambda}}$

If so, we can use standard, fast exchange algorithms (with no minimax search) to find the G-optimal design

© no duplication without permission

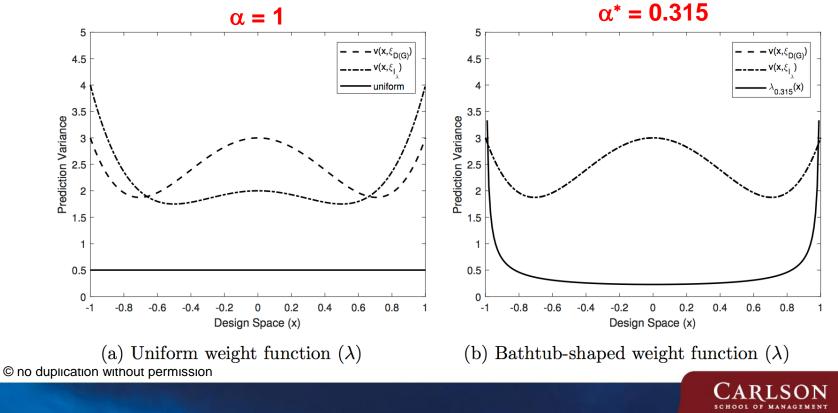
35

Try $\lambda(\mathbf{x})$ = beta density on [-1,1]



Find $\alpha = \beta$ so that designs are the same

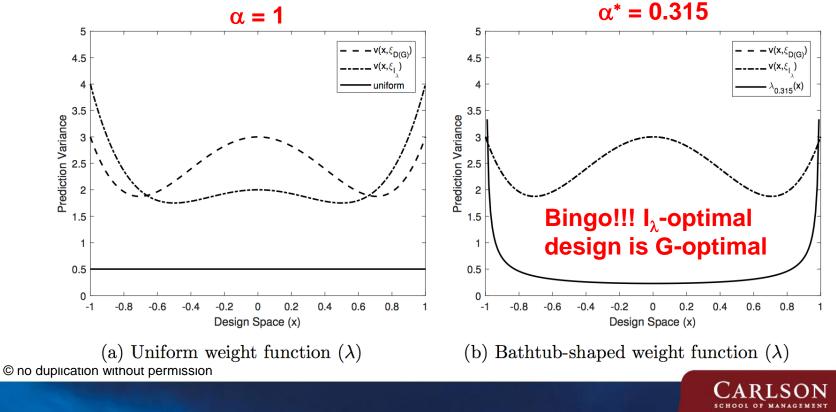
$$\alpha^* = \arg\min_{\alpha} \int_{\chi} [d(x,\xi^{G(D)}) - d(x,\xi^{I_{\lambda}})]^2 d\lambda_{\alpha}(x)$$



UNIVERSITY OF MINNESOTA

Find $\alpha = \beta$ so that designs are the same

$$\alpha^* = \arg\min_{\alpha} \int_{\chi} [d(x,\xi^{G(D)}) - d(x,\xi^{I_{\lambda}})]^2 d\lambda_{\alpha}(x)$$



UNIVERSITY OF MINNESOTA

OK, how about more factors

- Need multidimensional gamma density for weight function
- Assume independence, product of gammas?

OK, how about more factors

- Need multidimensional gamma density for weight function
- Assume independence, product of gammas?

Failure! Dead end. Abandon ship..

© no duplication without permission

OK, how about more factors

- Need multidimensional gamma density for weight function
- Assume independence, product of gammas?

Failure! Dead end. Abandon ship..

Lucia was sad

But wait!

• Think about the I_{λ} criterion:

$$\int_{\chi} v(\mathbf{x},\xi) \lambda(\mathbf{x}) d\mathbf{x} = \operatorname{tr}[\mathbf{M}^{-1}(\xi) \int_{\chi} \mathbf{f}'(\mathbf{x}) \mathbf{f}(\mathbf{x}) \lambda(\mathbf{x}) d\mathbf{x}] = \operatorname{tr}[\mathbf{M}^{-1}(\xi) \mathbf{W}]$$

where:

$$\mathbf{W} = \int_{\mathcal{X}} \mathbf{f}'(\mathbf{x}) \mathbf{f}(\mathbf{x}) \lambda(\mathbf{x}) d\mathbf{x}$$

- Only purpose of the λ density is to produce W
- So skip choosing λ try choosing W directly

But W has p(p+1)/2 entries---daunting?

$$\mathbf{W} = \int_{\chi} \mathbf{f}(x) \mathbf{f}'(x) d\lambda_{\alpha}(x) = \int_{\chi} \begin{pmatrix} 1 & x & x^{2} \\ x & x^{2} & x^{3} \\ x^{2} & x^{3} & x^{4} \end{pmatrix} \lambda_{\alpha}(x) d(x)$$
$$= \begin{pmatrix} 1 & E_{\lambda}(x) & E_{\lambda}(x^{2}) \\ E_{\lambda}(x) & E_{\lambda}(x^{2}) & E_{\lambda}(x^{3}) \\ E_{\lambda}(x^{2}) & E_{\lambda}(x^{3}) & E_{\lambda}(x^{4}) \end{pmatrix} = \begin{pmatrix} 1 & w_{1} & w_{2} \\ w_{1} & w_{2} & w_{3} \\ w_{2} & w_{3} & w_{4} \end{pmatrix}$$

But W has p(p+1)/2 - 1 entries---daunting?

$$\mathbf{W} = \int_{\chi} \mathbf{f}(x) \mathbf{f}'(x) d\lambda_{\alpha}(x) = \int_{\chi} \begin{pmatrix} 1 & x & x^2 \\ x & x^2 & x^3 \\ x^2 & x^3 & x^4 \end{pmatrix} \lambda_{\alpha}(x) d(x)$$
$$= \begin{pmatrix} 1 & E_{\lambda}(x) & E_{\lambda}(x^2) \\ E_{\lambda}(x) & E_{\lambda}(x^2) & E_{\lambda}(x^3) \\ E_{\lambda}(x^2) & E_{\lambda}(x^3) & E_{\lambda}(x^4) \end{pmatrix} = \begin{pmatrix} 1 & w_1 & w_2 \\ w_1 & w_2 & w_3 \\ w_2 & w_3 & w_4 \end{pmatrix}$$

But W has p(p+1)/2 - 1 entries---daunting?

$$\mathbf{W} = \int_{\chi} \mathbf{f}(x) \mathbf{f}'(x) d\lambda_{\alpha}(x) = \int_{\chi} \begin{pmatrix} 1 & x & x^2 \\ x & x^2 & x^3 \\ x^2 & x^3 & x^4 \end{pmatrix} \lambda_{\alpha}(x) d(x)$$
$$= \begin{pmatrix} 1 & E_{\lambda}(x) & E_{\lambda}(x^2) \\ E_{\lambda}(x) & E_{\lambda}(x^2) & E_{\lambda}(x^3) \\ E_{\lambda}(x^2) & E_{\lambda}(x^3) & E_{\lambda}(x^4) \end{pmatrix} = \begin{pmatrix} 1 & w_1 & w_2 \\ w_1 & w_2 & w_3 \\ w_2 & w_3 & w_4 \end{pmatrix}$$

All we know is that $-1 \le w_i \le 1$

© no duplication without permission

W-entries for full quadratic—Yes, daunting

Factors	р	W-entries
1	3	5
2	6	20
3	10	54
4	15	119
5	21	230
6	28	405

© no duplication without permission

Why is this a problem?

I need to find the W matrix that leads the I_{λ} -optimality (coord exch) algorithm to find the minimax design

- 1. Fix W
- 2. Now use coordinate exchange to find ξ_n |W.
 - This is (pretty) FAST
- 3. OK, now evaluate ξ_n |W using the minimax criterion
 - This is SLOW
- 4. Change W (move toward optimality), go to 2.

This is a minimax algorithm in W

© no duplication without permission

Why is this a problem?

I need to find the W matrix that leads the I_{λ} -optimality (coord exch) algorithm to find the minimax design

- 1. Fix W
- 2. Now use coordinate exchange to find ξ_n |W.
 - This is (pretty) FAST
- 3. OK, now evaluate ξ_n |W using the minimax criterion
 - This is SLOW
- 4. Change W (move toward optimality), go to 2.

CARLSON

UNIVERSITY OF MINNESOTA

NOOOOO!!

Is there a way to guess at W* in advance?

Little Theorem (Nachtsheim, 1979).

Let $\xi^{G(D)}$ denote the G(D)-optimal design for model f in design space χ , and let ξ^{λ} denote the I_{λ}-optimal design. Then:

$$\xi^{G(D)} = \lambda \Longrightarrow \xi^{\lambda} = \xi^{G(D)}$$

Is there a way to guess at W* in advance?

Little Theorem (Nachtsheim, 1979).

Let $\xi^{G(D)}$ denote the G(D)-optimal design for model f in design space χ , and let ξ^{λ} denote the I_{λ}-optimal design. Then:

$$\xi^{G(D)} = \lambda \Longrightarrow \xi^{\lambda} = \xi^{G(D)}$$

Translated: Use the approximate G(D)-optimal design as the weight function λ . Then the I_I-optimal design is the G(D)-optimal design

Implication:

Really good guess for the optimal W:

$$\mathbf{W}^* \approx \int_{\mathcal{X}} \mathbf{f}(\mathbf{x}) \mathbf{f}^T(\mathbf{x}) d\xi^{G(D)}(\mathbf{x})$$

That is: a really good guess at the best W, is the information matrix for the G(D)-optimal design!

OK, we have a starting value for W

• But we still have the dimensionality problem, no?

- Well, turns out that goes away too!
- Why? The information matrix for the G(D)-optimal designs for full second-order models have only two unique values, w₁ and w₂
- Upshot: Dimensionality in W is 2!

Example: Two-factor RSM model

$$\mathbf{W} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0.744 & 0.744 \\ 0 & 0.744 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.583 & 0 & 0 \\ 0.744 & 0 & 0 & 0 & 0.744 & 0.583 \\ 0.744 & 0 & 0 & 0 & 0.583 & 0.744 \end{pmatrix}$$

Example: Two-factor RSM model

$$\mathbf{W} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0.744 & 0.744 \\ 0 & 0.744 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.583 & 0 & 0 \\ 0.744 & 0 & 0 & 0 & 0.744 & 0.583 \\ 0.744 & 0 & 0 & 0 & 0.583 & 0.744 \end{pmatrix}$$

Example: Two-factor RSM model

$$\mathbf{W} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0.744 & 0.744 \\ 0 & 0.744 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.744 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.583 & 0 & 0 \\ 0.744 & 0 & 0 & 0 & 0.744 & 0.583 \\ 0.744 & 0 & 0 & 0 & 0.583 & 0.744 \end{pmatrix}$$

Amazingly, this is always true

$$W_{ij} = \begin{cases} 1: i = j = 1\\ w_1: i = j = 2, \dots, m+1; i = j = m(m+1)/2 + 2, \dots, p;\\ i = 1, j = m(m+1)/2 + 2, \dots, p; j = 1, i = m(m+1)/2 + 2, \dots, p;\\ w_2: i = j = m+2, \dots, m(m+1)/2 + 1;\\ i = m(m+1)/2 + 2, \dots, p, j = m(m+1)/2 + 2, \dots, p, \text{ and } i \neq j;\\ 0: \text{ elsewhere} \end{cases}$$

© no duplication without permission

From Atkinson, Donev, Tobias Optimal Design Book (2007)

	Approximate	G(D)-optimal de		Non-zer	\mathbf{w} o \mathbf{W} entries	
\overline{m}	Center point	Edge Centers	Corner Points	s	w_1	w_2
1	0.333(1)	-	0.333(2)	3	0.667	0.667
2	0.096(1)	0.080(4)	0.146~(4)	9	0.744	0.583
3	0.066(1)	0.035~(12)	0.064(8)	21	0.793	0.651
4	0.047(1)	0.016 (32)	0.028(16)	49	0.828	0.702
5	0.036(1)	0.007(80)	0.013(32)	113	0.852	0.739

Amazingly, this is always true

$$W_{ij} = \begin{cases} 1: i = j = 1 \\ w_1: i = j = 2, \dots, m+1; i = j = m(m+1)/2 + 2, \dots, p; \\ i = 1, j = m(m+1)/2 + 2, \dots, p; j = 1, i = m(m+1)/2 + 2, \dots, p; \\ w_2: i = j = m+2, \dots, m(m+1)/2 + 1; \\ i = m(m+1)/2 + 2, \dots, p, j = m(m+1)/2 + 2, \dots, p, \text{ and } i \neq j; \\ 0: \text{ elsewhere} \end{cases}$$

• At least for number of factors up to five. We haven't looked further

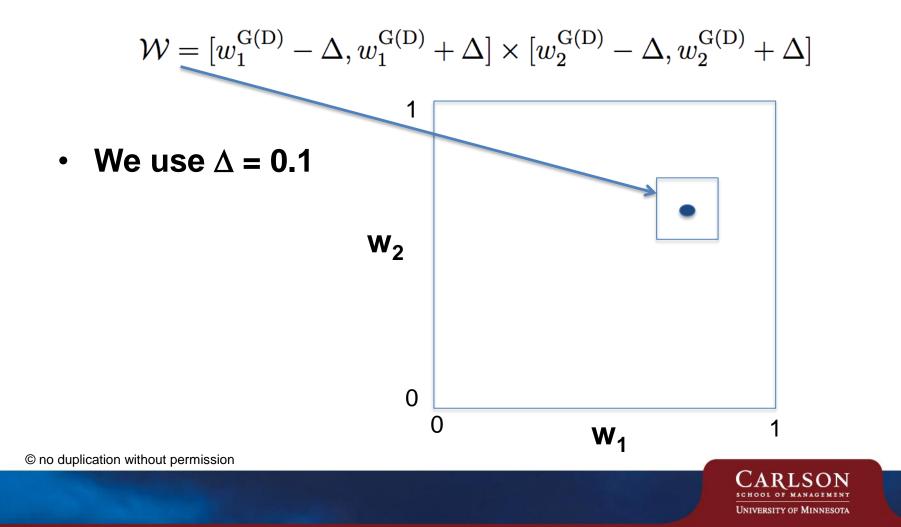
Finally, the algorithm

- 1. Obtain the approximate G(D)-optimal design, its information matrix, and the two starting w values
- 2. Use the coordinate exchange algorithm to find the optimal w_1 and w_2 values in a neighborhood of the starting values
 - 1. To evaluate w_1 and w_2 , obtain the I_{λ} -optimal design given W and evaluate the maximum variance
 - 2. If the new maxvar is less than the best maxvar found, save the new maxvar and the new w_1 and w_2 values, and continue with the coordinate exchange algorithm on the w values until convergence

The "neighborhood" of w_1 and w_2 values

$$\mathcal{W} = [w_1^{\mathrm{G}(\mathrm{D})} - \Delta, w_1^{\mathrm{G}(\mathrm{D})} + \Delta] \times [w_2^{\mathrm{G}(\mathrm{D})} - \Delta, w_2^{\mathrm{G}(\mathrm{D})} + \Delta]$$

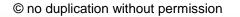
The "neighborhood" of w₁ and w₂ values



Performance

We have to do a 2D minimax search over a small space

- We might predict that the standard G-optimal algorithm based on the coordinate exchange will do better in one and two dimensions.
- But for three or more factors, this algorithm should be better



Competitors (But only consider 1 – 3 factors)

- 1. Genetic programming
 - Borkowski, J. J. (2003). "Using a genetic algorithm to generate small exact response surface designs".
 Journal of Probability and Statistical Science 1(1), 65–88.
- 2. Standard minimax coordinate exchange algorithm
 - Rodriguez, M., Jones, B., Borror, C. M. and Montgomery, D. C. (2010). "Generating and assessing exact G-optimal designs." *Journal of Quality Technology* 42(1), 1–18.

Borkowski (2003): Genetic Algorithm (GA)

- 1. John Borkowski's paper was first, and well done.
- 2. Identified the following test problems

Factors	Run sizes (n)							
1	3	4	5	6	7	8	9	
2	6	7	8	9	10	11	12	
3	10	11	12	13	14	15	16	

3. Found some very good designs (tough to beat)

Borkowski (2003): Genetic Algorithm (GA)

- 1. John Borkowski's paper was first, and well done.
- 2. Identified the following test problems

Factors	Run sizes (n)							
1	3	4	5	6	7	8	9	
2	6	7	8	9	10	11	12	
3	10	11	12	13	14	15	16	

- 3. Found some very good designs (tough to beat)
- 4. Takes forever!

Rodriguez, Jones, Borror, Montgomery

- Used standard coordinate exchange where the objective is to minimize the maximum variance
- Used same test problems
- Mixed results but did find a design or two that was better than the GP designs
- Faster than GP

Comparisons: Quality of Design

Efficiencies of our designs relative to G-CEXCH and GA

	One fact	or		Two factor	S		Three facto	ors
n	G-CEXCH	GA	$\mid n$	G-CEXCH	\mathbf{GA}	$\mid n$	G-CEXCH	GA
3	100.0%	100.0%	6	97.5%	96.1%	10	102.0%	95.4%
4	97.4%	96.2%	7	97.6%	95.5%	11	103.2%	96.9%
5	98.3%	97.0%	8	95.0%	94.7%	12	99.6%	93.7%
6	100.0%	100.0%	9	98.8%	95.8%	13	106.6%	99.1%
7	99.1%	98.8%	10	95.6%	93.2%	14	114.2%	100.0%
8	95.3%	94.7%	11	103.2%	97.0%	15	101.7%	100.1%
9	111.8%	100.0%	12	94.0%	95.1%	16	100.1%	103.9%

© no duplication without permission

Comparisons: Efficiency of Design

Efficiencies of our designs relative to G-CEXCH and GA

	One facto	or		Two factor	S		Three facto	ors
n	G-CEXCH	GA	$\mid n$	G-CEXCH	\mathbf{GA}	$\mid n$	G-CEXCH	GA
3	100.0%	100.0%	6	97.5%	96.1%	10	102.0%	95.4%
4	97.4%	96.2%	7	97.6%	95.5%	11	103.2%	96.9%
5	98.3%	97.0%	8	95.0%	94.7%	12	99.6%	93.7%
6	100.0%	100.0%	9	98.8%	95.8%	13	106.6%	99.1%
7	99.1%	98.8%	10	95.6%	93.2%	14	114.2%	100.0%
8	95.3%	94.7%	11	103.2%	97.0%	15	101.7%	100.1%
9	111.8%	100.0%	12	94.0%	95.1%	16	100.1%	103.9%

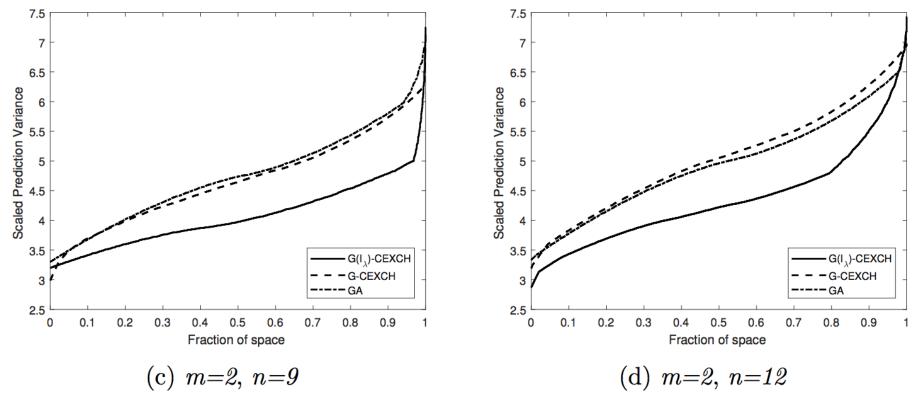
G-CEXCH and GA comparable

G-CEXCH and GA comparable

We're now beating G-CEXCH, sometimes GA

68

But these results are undersell our designs --Consider the FDS plots – here 2D examples

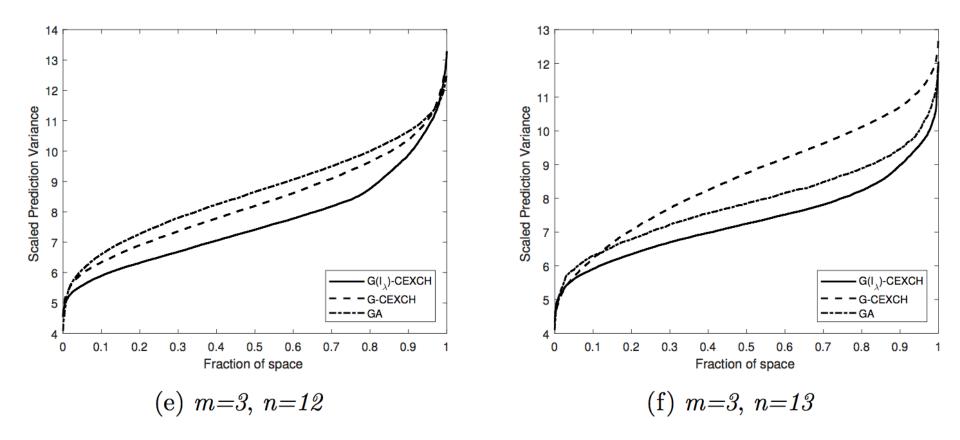


© no duplication without permission

UNIVERSITY OF MINNESOTA

CARLSON

FDS plots – 3D Examples



© no duplication without permission

Now consider relative computing time

	One fa	actor			Two fa	actors			Three	factors	
n	$G(I_{\lambda})$ -CEXCH	G-CEXCH	\mathbf{GA}	n	$G(I_{\lambda})$ -CEXCH	G-CEXCH	GA	n	$G(I_{\lambda})$ -CEXCH	G-CEXCH	GA
3	1.00	0.12	6.18	6	1.00	1.15	16.18	10	1.00	6.33	47.26
4	1.00	0.06	2.92	7	1.00	0.72	10.75	11	1.00	6.27	42.85
5	1.00	0.05	2.40	8	1.00	1.43	18.96	12	1.00	6.69	45.21
6	1.00	0.14	5.18	9	1.00	3.19	39.30	13	1.00	4.97	34.53
7	1.00	0.07	2.36	10	1.00	1.42	18.56	14	1.00	8.96	56.16
8	1.00	0.05	2.28	11	1.00	1.54	20.09	15	1.00	8.14	51.02
9	1.00	0.06	2.50	12	1.00	0.77	9.79	16	1.00	9.30	57.07

One factor:

Two factors:

Best:	G-CEXCH
Good:	G-I _λ (us)
Bad!:	GA

Best:G-I_λ (us)Good:G-CEXCHBad!!:GA

Three factors:

Best:	G-I _λ (us)
Good:	G-CEXCH
BAD!!!:	GA

© no duplication without permission

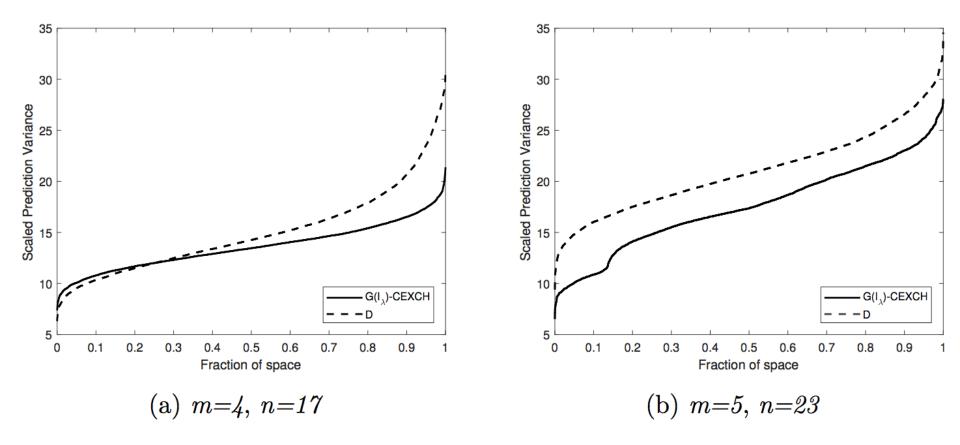
What about four and five factors?

- G-CEXCH: Forget it
 - Predicted time for five factors: 166 days
- GA: Forget it
 - Predicted time for five factors: Hell freezes over
- Our algorithm: not a problem

What about four and five factors?

- G-CEXCH: Forget it
 - Predicted time for five factors: 166 days
- GA: Forget it
 - Predicted time for five factors: Hell freezes over
- Our algorithm: not a problem, but still 24 hours for 200 random starts---7 minutes per random start

Our G-optimal designs vs D-optimal designs



74

Conclusions

- Developed a (relatively) fast algorithm for computing G-optimal designs for quadratic models
 - Idea: Choose the W (moment) matrix for I-optimality such that the solution is G-optimal
- Much to be done:
 - Other models will present more complex W matrices
 - That means more w_i entries, more computing
 - Similarly for irregular design spaces
 - But--algorithm is linear in the number of w_i entries

Thank you!

- Compliments, congratulations:
 - nacht001@umn.edu
- Criticisms, complaints:
 - <u>lucianhernandez@gmail.com</u>

