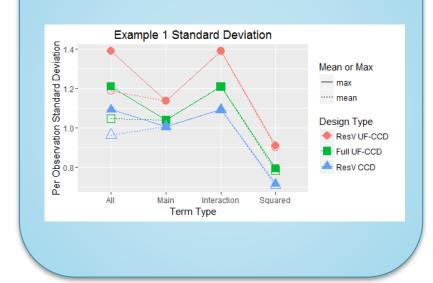
Central Composite Type Experimental Designs for Multiple Responses with Different Models

Wilmina (Billie) Marget Augsburg University, Department of MSCS

Max Morris Iowa State University, Department of Statistics

Introduction

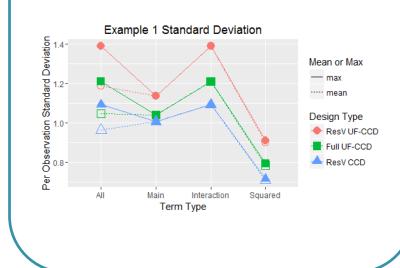
- New experimental designs based on CCD
- Multiple explanatory and response variables
- Previous info on model forms
 - Screening experiment
 - Process knowledge


Motivation

Unique Factor CCD

Factor	I.	2	3	4	5
Unique Factor	*	2*	3*	4*	2*
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Results & Future Research


Motivation

Unique Factor CCD

Factor	1	2	3	4	5
Unique Factor	*	2*	3*	4*	2*
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

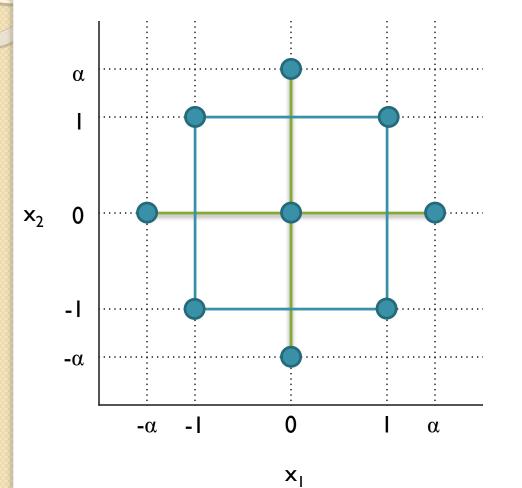
Results & Future Research

Bio-fuels Application [Friend (2013)]

- Factors: (15 total)
 - Coal particle size
 - Coal moisture content
 - Pellet aging temperature
 - Amount of bio-oil binder in pellet
- Response variables: (12 total)
 - Heating value
 - Moisture content
 - Carbon content
 - Strength

Bio-fuels Application

	Coal particle size	Coal moisture content	Pellet aging temp	Amt. of bio-oil binder	•••
Heating value	Х	Х			
Moisture content		Х		Х	
Carbon content			Х	Х	
Strength		Х			


Used for estimating full quadratic.

- Two-level (full or fractional) factorial
- Axial points
- Center points

[Box and Wilson	(1951)]
-----------------	---------

	1	2
F 11	+	+
Full	+	-
Factorial (2 ^k)	-	+
	-	-
A • 1	+α	0
Axial Points	-α	0
(2k)	0	+α
(2K)	0	-α
Center	0	0
Points	0	0
(n _c)	0	0

Central Composite Design (CCD)

	I	2
- 11	+	+
Full	+	-
Factorial (2 ^k)	-	+
(2^n)	-	-
A • 1	+α	0
Axial Points	-α	0
(2k)	0	+α
(2K)	0	-α
Center	0	0
Points	0	0
(n _c)	0	0

8

Regular Fractional Factorial

- Subset of full factorial
- Confound certain effects with intercept
- Resolution : Lowest order interaction confounded with intercept

	2	3	4	1234	123
+	+	+	+	+	+
+	+	-	-	+	-
+	-	+	-	+	-
+	-	-	+	+	+
-	+	+	-	+	-
-	+	-	+	+	+
-	-	+	+	+	+
-	-	-	-	+	-

Regular Fractional Factorial

- Resolution V: smallest effect confounded with intercept is 5-factor interaction
- Main effects: not confounded with 2- or 3-factor interactions
- 2-factor interactions: not confounded with other 2-factor interactions

Example: The standard solution is overkill.

	I	2	3	4	5	6	7	8	9	10
Response I	Х	Х	Х	Х	Х					
Response 2			Х		Х	Х	Х			
Response 3			Х	Х			Х	Х		
Response 4				Х				Х	Х	Х

Example: The standard solution is overkill.

	I	2	3	4	5	6	7	8	9	10
Response I	Х	Х	Х	Х	Х					
Response 2			Х		Х	Х	Х			
Response 3			Х	Х			Х	Х		
Response 4				Х				Х	Х	Х

Standard CCD:

- Resolution V fraction: 128
- Axial points: 20
- Center points: *n_c*
- Total runs needed: **148+***n*_c

Example: The standard solution is overkill.

	I.	2	3	4	5	6	7	8	9	10
Response I	Х	Х	Х	Х	Х					
Response 2			Х		Х	Х	Х			
Response 3			Х	Х			Х	Х		
Response 4				Х				Х	Х	Х

CCD (with **148+***n*_{*c*}):

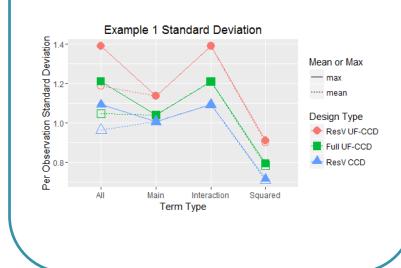
- I0 main effects
- I0 squared
- 45 2-factor interactions

We need:

- 10 main effects
- 10 squared
- 24 2-factor interactions
- 72 higher order interactions
 Not all in same model

Objective

- Develop design w/ fewer runs
- Estimation of:
 - Main effects
 - Quadratic
 - Needed 2-factor interactions
- Use previous info on model forms
- Same structure as CCD


Motivation

Unique Factor CCD

I.	2	3	4	5
*	2*	3*	4*	2*
Х	Х	Х		
	Х	Х	Х	
Х		Х		Х
Х			Х	
	X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X	I* 2* 3* 4* X X X X X X X X X X X X

Results & Future Research

Overview of UF Algorithm

- I. Consider each factor in order.
- 2. Assign factor 1 to new unique factor 1^*
- 3. For factor $l = 2, \ldots, k$
 - a) If such a unique factor exists, assign to an existing unique factor s.t. no other factor related to the same response has been assigned to that unique factor.

b) If not, assign to a new unique factor.

- 4. Construct a resolution $(\max_i k_i+1)$ or V fractional factorial in all k^* unique factors, and add axial and center points.
- 5. For each factor l assigned to unique factor m^* , set $l = m^*$.

Factor	I	2	3	4	5
Unique Factor					
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Factor	1	2	3	4	5
Unique Factor	*				
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Factor	I	2	3	4	5
Unique Factor	*	2*			
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Factor	I	2	3	4	5
Unique Factor	*	2*	3*		
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Factor	I	2	3	4	5
Unique Factor	*	2*	3*	4*	
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Factor	I	2	3	4	5
Unique Factor	*	2*	3*	4*	2*
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Factor	I	2	3	4	5
Unique Factor	*	2*	3*	4*	2*
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

- Resolution IV fractional factorial in $k^* = 4$ unique factors.
- Full factorial in each response model.

	2	3	4	5
*	2*	3*	4*	2*
+	+	+	+	+
+	+	-	-	+
+	-	+	-	-
+	-	-	+	-
-	+	+	-	+
-	+	-	+	+
-	-	+	+	-
-	-	-	-	-
±α				
	±α			±α
		±α		
			±α	
0	0	0	0	0

Summary of Algorithm 2

- Assign each factor to a unique factor so that no 2 factors related to the same response are assigned to the same unique factor.
- Construct a fractional factorial design in the set of unique factors.
 - Resolution $\max_i k_i + 1$ or
 - Resolution V

Factor	I	2	3	4	5
Unique Factor	*	2*	3*	4*	2*
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

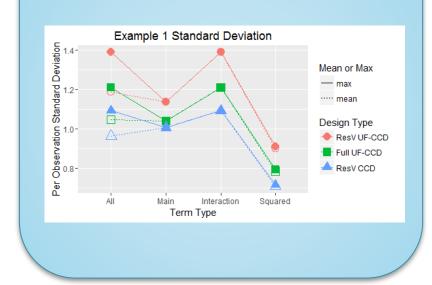
Order matters

- If we reorder the factors, the assignment of unique factors changes.
- How do we know this is the smallest number of factors we could get from the algorithm? (Illustrated in examples later)

Factor	4	I	2	3	5
Unique Factor	*	2*	3*	4*	*
Response I		Х	Х	Х	
Response 2	Х		Х	Х	
Response 3		Х		Х	Х
Response 4	Х	Х			

What do we get?

- Design with fewer runs
- Each response:
 - CCD
 - (replicated) full/fractional factorial
- All responses:
 - CCD with fractional factorial
 - Main effects confounded
 - Only across models
- Only use when you are sure of the model


CCD = Central Composite Design

<section-header>

Unique Factor CCD

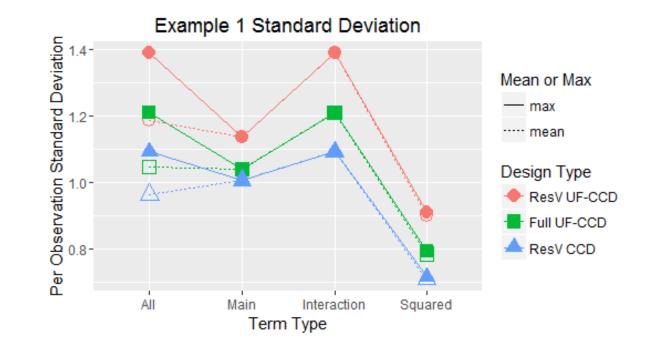
Factor	1	2	3	4	5
Unique Factor	*	2*	3*	4*	2*
Response I	Х	Х	Х		
Response 2		Х	Х	Х	
Response 3	Х		Х		Х
Response 4	Х			Х	

Results & Future Research

Example I

		2	3	4	5	6	7	8	9	10
	*	2*	3*	4*	5*	*	2*	*	2*	3*
Response I	Х	Х	Х	Х	Х					
Response 2			Х		Х	Х	Х			
Response 3			Х	Х			Х	Х		
Response 4				Х				Х	Х	Х

	#	# of runs	5
	Ex I	Ex 2	Ex 3
Res V UF-CCD	26+n _c		
Full UF-CCD	42+n _c		
Res V CCD	148+n _c		


Example I

		2	3	4	5	6	7	8	9	10
	*	2*	3*	4*	5*	*	2*	*	2*	3*
Response I	Х	Х	Х	Х	Х					
Response 2			Х		Х	Х	Х			
Response 3			Х	Х			Х	Х		
Response 4				Х				Х	Х	Х

	I	2	5	3	9	6	8	4	10	7
	*	2*	3*	4*	*	*	2*	5*	3*	6*
Response I	Х	Х	Х	Х				Х		
Response 2			Х	Х		Х				Х
Response 3				Х			Х	Х		Х
Response 4					Х		Х	Х	Х	

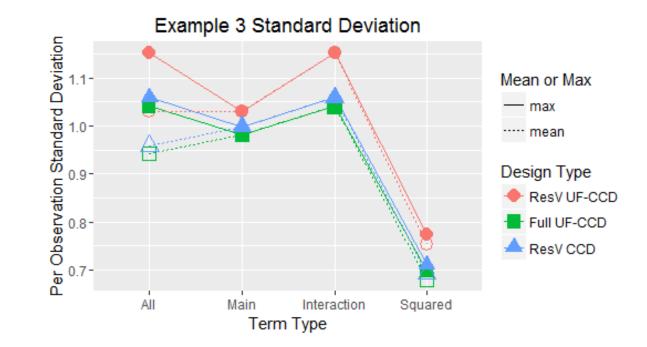
74/1000

Example I

		All Effe	All Effects		Main Effects		Interactions		Squared	
	Ν	mean	max	mean	max	mean	max	mean	max	
Res V UF-CCD	26+n _c	0.213	0.250	0.204	0.204	0.250	0.250	0.162	0.164	
Full UF-CCD	42+n _c	0.153	0.177	0.152	0.152	0.177	0.177	0.115	0.116	
Res V CCD	148+n _c	0.078	0.088	0.081	0.081	0.088	0.088	0.057	0.058	

	I	2	3	4	5	6	7	8	9	10	П	12
Response I	Х	Х	Х	Х	Х							
Response 2		Х	Х	Х		Х	Х					
Response 3		Х	Х					Х	Х			
Response 4			Х	Х		Х				Х		
Response 5						Х			Х	Х	Х	
Response 6					Х	Х	Х					
Response 7								Х				Х

	#	f of runs	
	Ex I	Ex 2	Ex 3
Res V UF-CCD	26+n _c	44+n _c	
Full UF-CCD	42+n _c	44+n _c	
Res V CCD	148+n _c	280+n _c	


	I	2	3	4	5	6	7	8	9	10	П	12
	*	2*	3*	4*	5*	*	6*	*	4*	2*	3*	2*
Response I	Х	Х	Х	Х	Х							
Response 2		Х	Х	Х		Х	Х					
Response 3		Х	Х					Х	Х			
Response 4			Х	Х		Х				Х		
Response 5						Х			Х	Х	Х	
Response 6					Х	Х	Х					
Response 7								Х				Х

		All Effects Main Effects		Interactions		Squared			
	N	mean	max	mean	max	mean	max	mean	max
UF-CCD	44+n _c	0.152	0.177	0.152	0.152	0.177	0.177	0.114	0.116
Res V CCD	280+n _c	0.055	0.063	0.059	0.059	0.063	0.063	0.040	0.041

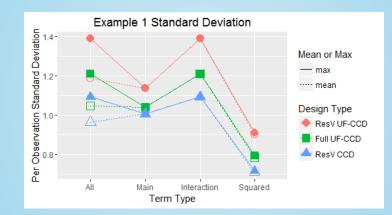
	I	2	3	4	5	6	7	8	9	10		12	13
Response I	Х	Х	Х	Х	Х	Х	Х	Х					
Response 2						Х	Х	Х	Х	Х			
Response 3				Х	Х			Х			Х	Х	
Response 4					Х							Х	Х
Response 5							Х					Х	

	#	# of runs	
	Ex I	Ex 2	Ex 3
Res V UF-CCD	26+n _c	44+n _c	80+n _c
Full UF-CCD	42+n _c	44+n _c	272+n _c
Res V CCD	148+n _c	280+n _c	282+n _c

		All Effe	All Effects		Main Effects		tions	Squared	
	N	mean	max	mean	max	mean	max	mean	max
Res V UF-CCD	80+n _c	0.112	0.125	0.112	0.112	0.125	0.125	0.082	0.084
Full UF-CCD	272+n _c	0.057	0.063	0.059	0.059	0.063	0.063	0.041	0.042
Res V CCD	282+n _c	0.057	0.063	0.059	0.059	0.063	0.063	0.041	0.042

Conclusion

- These designs reduce cost
- For each response, CCD with
 - full factorial
 - resolution V fractional factorial
- Use when variance is small and runs are expensive.


Motivation

Unique Factor CCD

	2	3	4	5
*	2*	3*	4*	2*
Х	Х	Х		
	Х	Х	Х	
Х		Х		Х
Х			Х	
	X X	I* 2* X X X X X X	I* 2* 3* X X X X X X X X X X X X	1* 2* 3* 4* X X X X X X X X X X X X X X X X

Results & Future Research

Wilmina (Billie) Marget margetw@Augsburg.edu

THANKYOU