

data&modelingsciences

Customizing and Assessing Deep Learning for Specific Tasks

Amir Tavanaei, Matthew Barker, William Brenneman

Data Science and Al Group Fall Technical Conference (October 2018)

About Me

- Amirhossein Tavanaei (Amir)
 - R&D Data Scientist at Procter and Gamble,
 - Dept. of Data Science and Artificial Intelligence.
- Education
 - Computer Science, PhD
 - Al, Machine Learning, Deep Learning
 - Bio-inspired Spiking Networks
- Hobby
 - Hiking
 - Movies

Agenda

- Introduction to neural networks and deep learning
- Deep learning architectures for different problems
- Data variations and requirements
- Deep learning customization
- Recent examples
- Summary

Neural Networks and Deep Learning

Neural Networks and Deep Learning

Bastos et al, Neuron, 2012

History, Big Data, GPU, and Break Through

ILSVRC

Machine Learning Models

NNs are easily stuck in local minima

Deep NNs have **many** parameters to train

Thanks to Big Data for managing and providing **enough data** for training deep neural networks with many parameters. Enough data points make the NN enable to handle saddle areas and local minima. Thanks to GPU for speeding up the massive computations.

DS/AI Project Management

Data/Model Variations

Common Mistakes in Applying ML/DL

You won't have a good AI model if you do:

- not aware of data distribution, skewness, balance/imbalance, ...
- not have enough and good (clean) data for training
- not choose proper ML model/structure
- not have a strategy to build your model (e.g. # of layers for NN)
- use one algorithm for everything
- not consider generalization and regularization
- not consider required equipment
- not know programing and the theory behind the ML model

Convolutional Neural Network (CNN)

Feature Extraction

LeNet: Lecun et. al. Tavanaei et. al. (2016)

Lee et. al. (2009)

CNN Example: Bioinformatics and Biomedicine

Do not ignore the Preprocessing Phase

Detecting Tumor Suppressor Genes and Onco-Genes Tavanaei et. al. (2017)

CNN Example: P&G Skin Advisor

Deep Learning Image Processing

SKIN ADVISOR

Cloud Computing Problem Detection

THE SCIENCE BEHIND **OLAY SKIN ADVISOR** skinadvisor.olay.com

CNN Example: P&G Skin Advisor

• An input image was forward propagated through the model to obtain a predicted age.

P&G Skin Advisor Demo

- Age is predicted
- A heat map was created.
- The heat map localizes pixel differences of a subject's image relative to younger than their predicted age

Recurrent Neural Network (RNN)

RNN/LSTM Example: Influenza Count Prediction

Weeks	1-week			5-weeks			10-weeks			15-weeks		
MODEL	MAPE	RMSPE	RMSE	MAPE	RMSPE	RMSE	MAPE	RMSPE	RMSE	MAPE	RMSPE	RMSE
LSTM	21.38	29.31	0.26	57.09	80.66	0.58	62.32	78.82	1.59	70.05	96.18	1.46
LSTM+CI	21.13	29.17	0.25	57.1	80.96	0.58	62.2	78.58	1.61	69.67	94.76	1.46
LSTM+CI+SA	16.69	23.13	0.22	51.49	72.58	0.55	60.47	76.28	1.54	65.86	<i>87.93</i>	1.41
ARIMA	44.69	83.58	0.3	68.99	95.75	0.68	79.89	100.46	1.78	109.6	154.32	1.93
ARIMA+CI	45.2	83.5	0.3	69.11	95.51	0.68	80.06	100.74	1.76	110.85	156.85	1.94
ARIMA+CI+SA	45.73	86.02	0.28	62.03	85.25	0.67	77.82	97.76	1.71	103.15	143.13	1.88

- Influenza peak prediction
- Emergency management
- Vaccination
- Controlling the influenza trend

Venna, Tavanaei, et. al. (2017)

Generative Adversarial Network (GAN)

- Virtual image generation
- Security
- Data/Formula generation (e.g. Medicine discovery)
- Automatic data augmentation

etc.

Summary

Question?

Deep Learning is not a hammer It is a HUGE toolbox

Thank you!

Contact Info:

tavanaei.a@pg.com

