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Disclaimer
•  This talk is based on experiences we have had 

over the years working with industrial 
problems

•  The applications are purely in data analytics 
and more importantly in production statistics

•  Being well aware of the danger in generalizing 
based on limited data, small variation in 
experiences is comforting in doing so

•  Yet some of the conclusions may be perceived 
as controversial and that is a good thing to 
start up the discussion



Production Statistics

•  The use of statistics in production has been 
widespread particularly in
– Process Understanding
– Product Development
– Process Improvement
– Process Surveillance
– Quality Control
– Reliability Engineering
– Maintenance Scheduling and Planning



Statistical Tools

•  An array of tools have been used in these 
endeavors
–  Simple descriptive statistics with exploratory plots
–  Design of experiments
–  Statistical modeling for predictive purposes
–  Statistical Process Surveillance
–  Acceptance sampling

•  Many of these tools are in need of updating 
to be effectively used in modern production



4th Industrial Revolution (Industry 4.0) 

https://en.wikipedia.org/wiki/Industry_4.0#/media/File:Industry_4.0.png 



Industry and Academia
•  Relationship involves two parties

•  Key to success is also simple

Problem Solver Problem Owner 
Expectations 

Expectations 

MATCHING EXPECTATIONS! 



MISMATCH IN 
EXPECTATIONS



Computer clip arts are obtained from http://clipart-library.com/cloud-server-cliparts.html 

Initially: Building up Databases (Historians) 

… 







What we do
•  Many statisticians (and engineers) are 

classically trained in scientific investigation 
   (Scientific Method)
•  A sequential method of induction and deduction 

heading from observation to hypothesis 
generation
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Figure1. Iterative experimentation with alternatives for a subsequent set of runs 
depending on results from a previous set
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Data Scientists in general
•  We are often not the problem owners nor are 

we the subject matter experts
•  We assume the supporting role and come 

into play when the hypothesis has already 
been defined

•  We usually recommend that as the first step 
“The problem should be defined and then …”

•  Similar approach is adopted by popular 
quality management methodologies



Quality Management
•  One of the key aspects of Total Quality 

Management is PDSA cycle: Plan, Do, Study 
and Act

•  The whole thing starts with PLAN and then 
comes DO

•  Six Sigma quality management approach 
primarily revolves around DMAIC; Define, 
Measure, Analyze, Improve and Control

•  Again the whole process starts with DEFINE 
followed by MEASURE



First mismatch
•  We are conditioned to deduce and not 

necessarily induce at least at the beginning 
of the learning process

•  Hence “Do something!” did not make initial 
sense

•  Considerable amount of time was wasted in 
aligning the expectations

•  Then came the data related issues



Database Issues
•  Retrieving data from existing databases has 

proven to be quite challenging
•  Connection to various databases with 

varying protocols requires different expertise 
than most data analyst may have been 
trained for

•  Security concerns were well-abounding 
when handling sensitive production data

•  Physical location of the data analyst often 
required remote access



Merging Databases
•  Data from different sites become available
•  But often those sites are subjected to different 

operating conditions
•  These sometimes severely impaired the ability 

to combine data from different sites
•  Focus was given on more stable production 

sites, which is the the right approach at least 
initially

•  But site to site differences are also valuable to 
extract in order to eventually minimize them



Historical Data
•  The claim that large amounts of historical 

data being available can be misleading
•  Usually operating conditions can drastically 

change to make parts of the historical data 
incompatible

•  Data collection schemes and measurement 
systems do also get changed and 
modernized over the years

•  This can once again render different parts of 
the data being incompatible for further 
analysis



Multi-stage Processes
•  Many industrial processes consist of multiple 

stages 
•  Historically focus has been on unit operations 

sometimes taken care of different groups in 
production

•  Data collection is seldom standardized hence 
connecting all these data becomes extremely 
challenging

•  We do also have different types of data; 
continuous, categorical, text, etc. 

•  These represent huge hurdles for many analysis 
methods



Traceability
•  True cradle to grave traceability is rare 

particularly for chemical processes
•  That is, for each product knowing all process 

variables the raw material was exposed to is 
usually not available

•  Often different production streams are 
combined and/or split to make the 
traceability almost impossible

•  Connection between process variables and 
product characteristics require a sensible 
level of traceability



Data Manipulation
•  Data sometimes is not recorded in its raw 

form
•  Manipulations are made to ease storage 

issues
•  Data compression is a common practice 

particularly in chemical industry
•  This results in process variables of various 

lengths and irregular sampling frequencies
•  Many analysis approaches can simply not 

handle such data



Lack of Specialty Data
•  The aim of many data analytics studies is to 

classify the process or the product to be good or 
bad as in process surveillance

•  “Bad process data” is surprising hard to come by
•  Then the methods relying almost solely on good 

process data are reduced to declaring that “there is 
something out of the ordinary”

•  This becomes particularly important when 
classification of defect types in a product for 
example

•  That is, going beyond detection towards diagnosis



Process and Product Data
•  How do we connect process information 

with product quality?
•  Production rate seems to be an issue
•  Fast production rate makes it difficult to 

obtain product quality for each product
•  Moreover type of inspection certainly 

affects feasibility for more frequent 
inspection 



Type of Inspection
•  100% inspection

–  Leaky and dirty eggs being sorted out through Image Analysis*

•  What if inspection requires more detailed 
measurements?

•  IH Foods http://www.ihfood.dk/eggs 
•  The picture for the injection molding machine is taken from http://www.screw-barrel.com/html/Screw-Barrel-For-Injection-Molding%20Machine.html  
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Semi-supervised Learning

•  Combining supervised and unsupervised 
data is proven to be difficult

•  Eventually we can hope for all supervised 
data, i.e., direct connection between the 
product characteristics and corresponding 
process variables data

•  More sensorics applications are needed to 
accomplish that



Process Complexity

•  Perceived complexity of the processes 
favors correspondingly complicated 
approaches in data analysis

•  Solutions then tend to be case specific or 
at least fine-tuned to solve a particular 
situation rendering generalization difficult

•  Process expertise can help alleviate this



An almost realistic process



Tennessee Eastman Process
•  Accepted to be highly realistic due to its 

complexity and used in many academic 
studies for methodology development

•  Up to 50 variables can be considered and 
many simulated faults can be introduced

•  All suggested methods attempt to tackle the 
problem at once 

•  A slightly skeptical approach reveals a 
different picture about the interdependencies 
in the system



Behind the scene



What can we conclude?

•  Many of the relationships are in fact known 
and physically introduced in terms of 
controlled/manipulated variables pairs

•  Isolation of these relationships revealed 
essential process related correlations

•  This in turn provided a clearer focus for 
example in process surveillance efforts



Correlation and Causality
•  Observational data allows for predictive 

models
•  This is achieved through unearthed 

correlations between the inputs and the 
outputs

•  These models can be quite valuable in 
making predictions about the future state of 
the process and hence for risk management

•  Expecting more than that can be foolish
•  Controlled experiments is usually the way to 

go



         BIG DATA       Intelligently collected BIG DATA 

Final Thoughts
•  Some of these issues are things of the past and 

some do linger 
•  We are working on all of these
•  We are however no longer excited with the news of 

“We have Big Data”
•  What is exciting is to have the ability to collect as 

much relevant data as needed



Final Thoughts
•  Big Data applications should be forward looking 

•  Furthermore, it is essential to understand that this 
work is interdisciplinary involving IT, sensorics and 
data analytics

•  So far the concern has been in gathering the data, 
extracting information and making inference

•  How to covert that into actionable decision involves 
more disciplines such as operations management



Thank You!  


