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Design of Experiments

Design of experiments (DOE) is a systematic series of tests, in
which purposeful changes are made to input factors, so that causes
for significant changes in the output responses may be identified.

Examples:

1 Three characteristics (e.g. size, color, position) of an online banner ad
are varied, and the click-through rate is measured.

2 Several features of a stent are varied, and the burst pressure of the
stent is measured.

3 Three olive oils are mixed together in various proportions. It’s thought
that some blend of the three oils has better sensory characteristics than
any of the individual oils.

4 The proportions of ingredients in a cake batter are varied, and the
cakes are baked at different temperatures.
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The Basics

In a typical experiment, we assume n observed responses
yyy = (y1, . . . , yn) are a function of k factors (x1, . . . , xk) that are
intentionally changed:

yyy = f (x1, ..., xk)

f is unknown, but we commonly use a linear model as an
approximation:

yyy = XXXβββ + εεε, εεε ∼ Nn(0, σ2III )

where XXX is an n × p model matrix, βββ is a p × 1 vector of parameters,
εεε is an n × 1 vector of errors, and σ2 is the error variance.
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Mixture Designs

In many experimental settings, yyy is expected to be affected by the
magnitudes of the factor levels:

Example: Baking a pie at

350◦F for 30 minutes
700◦F for 60 minutes

where yyy is the taste rating of the pie.

In other experimental settings, ingredients are mixed together and yyy is
only thought to depend on their proportions:

Example: Preparing lemonade with

1 cup sugar water + 1 lemon
2 cups sugar water + 2 lemons

where yyy is the taste rating of the lemonade.

Martin Bezener (Stat-Ease, Inc.) FTC 2017 7 / 46



Mixture Designs

In a mixture experiment, q components (x1, ..., xq) are blended
together. The dependence of yyy on the proportions of the components
introduces an equality constraint:

x1 + x2 + · · ·+ xq = T

Without loss of generality, we say T = 1 and so all 0 ≤ xj ≤ 1.

In most cases, it does not make sense for some xj ≈ 0 or xj ≈ 1, so
the component ranges may need be constrained:

0 < Lj ≤ xj ≤ Uj < 1, for some j

This is a critical step!
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Mixture Designs

Constraints involving multiple components may also be necessary.

Example: Two oils can each comprise 0− 20 volume % of a mixture,
but together must comprise a minimum of 10% of the mixture.

The equality constraint makes one component redundant, since

xq = 1− (x1 + · · ·+ xq−1)

and so the components cannot vary independently of one another.

The standard linear model must be re-parameterized to account for
the loss of dimension (e.g. Scheffe, Slack, Cox).

This complicates the design, analysis, and interpretation of the model.
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Other Issues

More complicated constraints:

Ratio constraints
Group constraints

All of the above defines the mixture design space

How is this space chosen?

Previous experimental information
Subject-matter knowledge
Range-finding experiments

Straightforward in response surface designs (usually), but much more
difficult in mixture DOE due to the equality constraint.

This space is almost never chosen perfectly the first time around!
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Applications

Mixture experiments are useful in a large number of industries:

Food and beverage

Pharmaceutical

Paints and coatings

Production of materials (e.g. plastics)

Oil and gas

... and so on
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Design Build Considerations

There are few existing off-the-shelf designs for mixture experiments.

Building the design via “eye-balling” and intuition can result in a
number of problems:

Non-estimable model terms
Poor coverage of the design space
Designs that are too small (not enough precision) or too large
(inefficient)

Designs with multicomponent constraints are even more challenging.

Solution: Build using optimal design algorithms.
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Optimal Design

These designs are typically built algorithmically.

Mixture component and process factor lows and highs.

Constraints involving multiple components or process factors.

A target model that the design should support.

An optimality criterion (i.e. design scoring method) must also be chosen:

D: Minimize volume of the joint confidence ellipsoid around the
model coefficients:

D(XXX ) = |(XXXTVVV−1XXX )−1|

I: Minimize the average prediction variance:

I (XXX ) = E [Var(ŷ)]

For the remainder of the talk, we only use I-optimality.
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Some Variations

Combined mixture-process designs

Split-plot designs

Hard to change factors/components

Mixture-amount experiments

Fertilizer: composition and amount
Tablet coating: formulation and amount

Double-mixture experiments

Separate frosting and filling formulation
Two mixtures
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The Mixture DOE Sequence

1 Select q components x1, . . . , xq and define their ranges

2 Choose a design D and evaluate it

3 Perform the experiment

4 Analyze data and fit model f → Fix problems

5 Optimize the process

6 Confirm → Finish!

7 Continue Experimentation?
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Motivating Example

Suppose we have a three-component mixture with component ranges

0.2 ≤ x1 ≤ 0.6

0.2 ≤ x2 ≤ 0.6

0.2 ≤ x3 ≤ 0.6

x1 + x2 + x3 = 1

We build a 14-run I-optimal mixture design.
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Potential Results

What we hope happens:
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Why is this good?

The optimum lies neatly in the middle of the space.

Low prediction error and uncertainty.

Large operating window for production.

Useful for Quality by Design (QBD) applications.

Should perform some confirmation runs.
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Potential Results

What usually happens:

Martin Bezener (Stat-Ease, Inc.) FTC 2017 20 / 46



Why is this bad?

The solution is on the edge of the design space.

Process is not fully optimized.

Little operating space for production.

High prediction error and uncertainty.
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Where to go from here?

Accept results and move on?

Cannot do more experiments
Optimum may actually be “good enough”

Throw away data and start over?

Inefficient, especially if the optimum is close to the design space
Less information, more error and uncertainty
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Where to go from here?

Extrapolate?
Prediction accuracy and precision falls off quickly.
Model trend not guaranteed to hold outside of design space.
Confirmation runs are critical in this situation.
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Design Space Augmentation

Many experimenters are completely unaware of design space
augmentation.

The idea behind design space augmentation (expansion) is to perform
a follow-up experiment near the optimum found in the original design
space, without throwing away the original data.

Assumption: The original design space can be expanded to
“capture” the optimum. The true optimum is reasonably close to the
original space.

Little to no research is available on this topic, especially in the
context of mixture experiments.
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Design Space Augmentation

Typically done in an ad-hoc, “intuitive” manner, if at all.

“Augmentation” is typically studied in the context of adding runs to
support fitting of a higher-order model, fixing problems, testing new
hypotheses, adding new factors/components etc:

Example: Factorial design → central composite design
Example: Quadratic → mixture special cubic model

May not always work (disjoint region)

May require several iterations

Martin Bezener (Stat-Ease, Inc.) FTC 2017 26 / 46



1 Mixture Experiments

2 Motivating Example

3 Design Space Augmentation

4 Current Strategy

5 Problems and Improvements

6 Conclusion

Martin Bezener (Stat-Ease, Inc.) FTC 2017 27 / 46



Common Strategy

1 Start with a design Dbase over design space Rbase, with nbase runs.

2 Perform experiment and decide whether to expand the design space.

3 Key: Re-define the component limits for some (or all) of the mixture
components ← Difficult!.

4 The new portion of the design space is Raug. The full region is
R =Rbase ∪Raug.

5 This is difficult in mixtures due to the equality constraint. Adding
more of one component means you must add less of another
component.
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Common Strategy

6 Fill R with a follow-up design Daug with naug runs.

7 The full design is D = Dbase ∪Daug.

8 Choose Daug such that

Daug = argminD∗ g(D∗ ∪Dbase)

where g is an optimality criterion.

9 In mixture designs, the I optimal criterion is typically used, which
measures the average prediction variance throughout the design space.

10 Perform the additional runs and optimize.
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Simple Example

Here is a simple illustration (based on a real example) which
demonstrates the methodology.

Suppose we have a three component mixture.

For the sake of brevity, label the components A,B,C.

The component ranges are:

0.1 ≤ A ≤ 0.5

0.3 ≤ B ≤ 0.7

0.2 ≤ C ≤ 0.5

These component ranges produce a non-simplex (non-triangular)
design space, so a 12-run I-optimal design was created.
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Simple Example

The design used in the experiment was
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Simple Example

The 12-run experiment was performed, and the following plots of the
model fit were obtained. Not good!
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Simple Example

The maximum predicted response at the vertex fell short of the
experimental goals.

The design space was augmented, leaving in the original data. The
component ranges were changed to:

0.1 ≤ A ≤ 0.8

0.1 ≤ B ≤ 0.7

0.1 ≤ C ≤ 0.5

This allowed the experimenters to continue working towards their goal
without having to throw away data.
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Simple Example

The design space with the added runs looks like:
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Simple Example

Afterwards, 6 runs and 1 space-filling point were added in a second
block.
The points were chosen to minimize the I-optimality score over the
entire (expanded) design space.
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Simple Example

The experimenters performed the 7 follow-up runs.

After data analysis, the following results were obtained.
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Sunscreen Example

Design space augmentation is easy to visualize with only three
components. Here is a slightly more complicated example.

Four components are blended together in an attempt to create an
SPF 70 sunscreen.

The component ranges are:

1 ≤ A ≤ 2

5 ≤ B ≤ 10

1 ≤ C ≤ 2

63 ≤ F ≤ 70

where A + B + C + F = 77 wt%. Components D, E, and G were held
fixed in each sunscreen blend.

The experimenters built a 20-run I-optimal design.
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Sunscreen Example

Optimization shows that the highest predicted SPF is ≈ 50, which falls
short of our target of 70. Looking at the components shows that this
maximum occurs at:
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Sunscreen Example

The formulators changed the component limits:

1 ≤ A ≤ 2→ 3

5 ≤ B ≤ 10→ 15

1 ≤ C ≤ 2→ 3

0←63 ≤ F ≤ 70

7 follow-up runs were added in a second block. The 7 runs were
chosen in a way that minimized the average prediction variance over
all 27 runs, according to the strategy.
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Sunscreen Example

Optimization now shows that we can achieve our desired SPF of 70:
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What Next?

The proposed strategy works well, but:

By finding the optimal design for the combined design region R, the
algorithm may place points in the original region Rbase if it improves
the criterion - not ideal!

By only building the “best” design for the new region Raug, you will
likely be performing too many runs at the edge between Rbase and
Raug.
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Proposal

A proposed restricted criterion for selecting the follow-up runs:

Daug = argminD∗∈Raug
g(D∗ ∪Dbase)

Advantages:

This criterion uses all the available data from the first experiment.
All follow-up runs are forced to be in the new region.
Unresolved Issue: Blocking may require that at least one follow-up
run be contained in the old region.
Disadvantage: Somewhat complicated to implement.
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Other Issues

This is an interesting problem that often arises in practice, with few
known solutions. Some other related problems are:

Shrinking the design space?
Selection of runs and evaluation of follow-up design.
Extensions to split-plot, strip-plot, and combined designs.
Generalization to all constrained design spaces (e.g. RSM).
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The End

Thanks for listening!

martin@statease.com
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