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Design of Experiments

e Design of experiments (DOE) is a systematic series of tests, in
which purposeful changes are made to input factors, so that causes
for significant changes in the output responses may be identified.

o Examples:

@ Three characteristics (e.g. size, color, position) of an online banner ad
are varied, and the click-through rate is measured.

@ Several features of a stent are varied, and the burst pressure of the
stent is measured.

© Three olive oils are mixed together in various proportions. It's thought
that some blend of the three oils has better sensory characteristics than
any of the individual oils.

© The proportions of ingredients in a cake batter are varied, and the
cakes are baked at different temperatures.
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@ In a typical experiment, we assume n observed responses
y = (v1,...,yn) are a function of k factors (xi,...,xx) that are
intentionally changed:

y = f(Xl, ...,Xk)

o f is unknown, but we commonly use a linear model as an
approximation:

y=XB+e, e~N,0,0°

where X is an n x p model matrix, 8 is a p x 1 vector of parameters,
€ is an n x 1 vector of errors, and o2 is the error variance.
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Mixture Designs

@ In many experimental settings, y is expected to be affected by the
magnitudes of the factor levels:
o Example: Baking a pie at

@ 350°F for 30 minutes
@ 700°F for 60 minutes

where y is the taste rating of the pie.

@ In other experimental settings, ingredients are mixed together and y is
only thought to depend on their proportions:
e Example: Preparing lemonade with

@ 1 cup sugar water + 1 lemon
@ 2 cups sugar water + 2 lemons

where y is the taste rating of the lemonade.
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Mixture Designs

@ In a mixture experiment, g components (xi, ..., Xq) are blended
together. The dependence of y on the proportions of the components
introduces an equality constraint:

xi+xo+ o +xg=T
Without loss of generality, we say T =1 and so all 0 < x; < 1.

@ In most cases, it does not make sense for some x; ~ 0 or x; =~ 1, so
the component ranges may need be constrained:

0<Li<x<U <1, forsomej

This is a critical step!
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Mixture Designs

@ Constraints involving multiple components may also be necessary.

o Example: Two oils can each comprise 0 — 20 volume % of a mixture,
but together must comprise a minimum of 10% of the mixture.

@ The equality constraint makes one component redundant, since
Xg=1—(x1+ -+ xq-1)
and so the components cannot vary independently of one another.

@ The standard linear model must be re-parameterized to account for
the loss of dimension (e.g. Scheffe, Slack, Cox).

@ This complicates the design, analysis, and interpretation of the model.
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Other Issues

@ More complicated constraints:
o Ratio constraints
e Group constraints
@ All of the above defines the mixture design space

@ How is this space chosen?
e Previous experimental information
e Subject-matter knowledge
e Range-finding experiments
@ Straightforward in response surface designs (usually), but much more
difficult in mixture DOE due to the equality constraint.

@ This space is almost never chosen perfectly the first time around!
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Applications

Mixture experiments are useful in a large number of industries:
@ Food and beverage

Pharmaceutical

Paints and coatings

Production of materials (e.g. plastics)

Oil and gas

. and so on
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Design Build Considerations

There are few existing off-the-shelf designs for mixture experiments.

Building the design via “eye-balling” and intuition can result in a
number of problems:
o Non-estimable model terms
e Poor coverage of the design space
e Designs that are too small (not enough precision) or too large
(inefficient)

@ Designs with multicomponent constraints are even more challenging.

@ Solution: Build using optimal design algorithms.

Martin Bezener (Stat-Ease, Inc.)



Optimal Design

These designs are typically built algorithmically.
@ Mixture component and process factor lows and highs.
@ Constraints involving multiple components or process factors.
@ A target model that the design should support.
An optimality criterion (i.e. design scoring method) must also be chosen:

@ D: Minimize volume of the joint confidence ellipsoid around the
model coefficients:

D(X) = [(XTV1Xx)~
@ |: Minimize the average prediction variance:

I(X) = E[Var(9)]

.
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Some Variations

@ Combined mixture-process designs
@ Split-plot designs

e Hard to change factors/components
@ Mixture-amount experiments

o Fertilizer: composition and amount
e Tablet coating: formulation and amount

@ Double-mixture experiments

o Separate frosting and filling formulation
e Two mixtures

.

Stat-€ase

Statistics made casy®

Martin Bezener (Stat-Ease, Inc.) FTC 2017 14 / 46



The Mixture DOE Sequence

Select g components Xy, ...,Xq and define their ranges
Choose a design D and evaluate it

Perform the experiment

Analyze data and fit model f — Fix problems
Optimize the process

Confirm — Finish!

000000

Continue Experimentation?

.

Stat-€ase

tatistics made casy®

Martin Bezener (Stat-Ease, Inc.) FTC 2017 15 / 46



© Motivating Example
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Motivating Example

@ Suppose we have a three-component mixture with component ranges
0.2<x1<0.6
0.2<x2<0.6
0.2<x3<0.6
X1 +x2+x3=1
@ We build a 14-run l-optimal mixture design.

Component 1
1

.
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Potential Results

@ What we hope happens:

Component 1
1

1 0 1
Component 2 Component 3
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Why is this good?

@ The optimum lies neatly in the middle of the space.
@ Low prediction error and uncertainty.

@ Large operating window for production.

@ Useful for Quality by Design (QBD) applications.

@ Should perform some confirmation runs.

.

Stat-€ase

tatistics made casy®

Martin Bezener (Stat-Ease, Inc.) FTC 2017 19 / 46



Potential Results

@ What usually happens:

Component 1
1

1 0 1

Component 2 Component 3
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Why is this bad?

The solution is on the edge of the design space.
Process is not fully optimized.

Little operating space for production.

High prediction error and uncertainty.
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Where to go from here?

@ Accept results and move on?

e Cannot do more experiments
e Optimum may actually be “good enough”

@ Throw away data and start over?

o Inefficient, especially if the optimum is close to the design space
o Less information, more error and uncertainty

Martin Bezener (Stat-Ease, Inc.)



W to go from here?

o Extrapolate?
e Prediction accuracy and precision falls off quickly.
e Model trend not guaranteed to hold outside of design space.
e Confirmation runs are critical in this situation.

Component 1
1
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© Design Space Augmentation
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Design Space Augmentation

@ Many experimenters are completely unaware of design space
augmentation.

@ The idea behind design space augmentation (expansion) is to perform
a follow-up experiment near the optimum found in the original design
space, without throwing away the original data.

@ Assumption: The original design space can be expanded to
“capture” the optimum. The true optimum is reasonably close to the
original space.

o Little to no research is available on this topic, especially in the
context of mixture experiments.

Martin Bezener (Stat-Ease, Inc.)



Design Space Augmentation

@ Typically done in an ad-hoc, “intuitive” manner, if at all.

@ “Augmentation” is typically studied in the context of adding runs to
support fitting of a higher-order model, fixing problems, testing new
hypotheses, adding new factors/components etc:

o Example: Factorial design — central composite design
o Example: Quadratic — mixture special cubic model

e May not always work (disjoint region)

@ May require several iterations
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@ Current Strategy
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Common Strategy

Start with a design Dp,se Over design space Rpase, With npase runs.

Perform experiment and decide whether to expand the design space.

© 00

Key: Re-define the component limits for some (or all) of the mixture
components < Difficult!.

© The new portion of the design space is Raug. The full region is
R = Rbase U Raug-

© This is difficult in mixtures due to the equality constraint. Adding
more of one component means you must add less of another
component.

Martin Bezener (Stat-Ease, Inc.)



Common Strategy

Fill R with a follow-up design D,z with nyug runs.
The full design is D = Dpase U Dayg.
Choose D,g such that

© ©0

Dayg = argminp,, g(D* U Dpyse)

where g is an optimality criterion.

© In mixture designs, the | optimal criterion is typically used, which
measures the average prediction variance throughout the design space.

@ Perform the additional runs and optimize.
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Simple Example

@ Here is a simple illustration (based on a real example) which
demonstrates the methodology.

Suppose we have a three component mixture.
For the sake of brevity, label the components A, B, C.

The component ranges are:

0.1<ALO05
0.3<B<O07
02<C<05

@ These component ranges produce a non-simplex (non-triangular)
design space, so a 12-run l-optimal design was created.
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Simple Example

The design used in the experiment was

o
-
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Simple Example

The 12-run experiment was performed, and the following plots of the
model fit were obtained. Not good!

o
-

Martin Bezener (Stat-Ease, Inc.)



Simple Example

@ The maximum predicted response at the vertex fell short of the
experimental goals.

@ The design space was augmented, leaving in the original data. The
component ranges were changed to:

0.1<A<LO038
0.1<B<07
0.1<C<05

@ This allowed the experimenters to continue working towards their goal
without having to throw away data.
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Simple Example

The design space with the added runs looks like:
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Simple Example

@ Afterwards, 6 runs and 1 space-filling point were added in a second
block.

@ The points were chosen to minimize the l-optimality score over the
entire (expanded) design space.

1
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Simple Example

@ The experimenters performed the 7 follow-up runs.
o After data analysis, the following results were obtained.
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Sunscreen Example

Design space augmentation is easy to visualize with only three
components. Here is a slightly more complicated example.

@ Four components are blended together in an attempt to create an
SPF 70 sunscreen.

@ The component ranges are:

1<AL?2
5<B<10
1<C<2
63 <F <70

where A +B + C + F = 77 wt%. Components D, E, and G were held
fixed in each sunscreen blend.

@ The experimenters built a 20-run l-optimal design.
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Sunscreen Example

Optimization shows that the highest predicted SPF is

~ 50, which falls

short of our target of 70. Looking at the components shows that this

maximum occurs at:

]

1

A:Avobenzone = 2

L]

2

-

1

C:Mexoryl SX = 2

Martin Bezener (Stat-Ease, Inc.)
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L]

10

B:Homosalate = 10

-

63

F:Water = 63
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Sunscreen Example

@ The formulators changed the component limits:

1<AK<2-+3

5<B<10—~ 15

1<C<2-3
0+63<F<T0

@ 7 follow-up runs were added in a second block. The 7 runs were
chosen in a way that minimized the average prediction variance over
all 27 runs, according to the strategy.
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Sunscreen Example

Optimization now shows that we can achieve our desired SPF of 70:

- : I . 1

1 3 5 15
A:Avobenzone = 1.95174 B:Homosalate = 13.478
& a
- O ||
1 3 56 70
CMexoryl SX = 2.9223 F:Water = 58.648
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© Problems and Improvements
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The proposed strategy works well, but:

@ By finding the optimal design for the combined design region R, the
algorithm may place points in the original region Ry,ee if it improves
the criterion - not ideal!

@ By only building the “best” design for the new region R,yg, you will
likely be performing too many runs at the edge between Rpase and
Raug-

Martin Bezener (Stat-Ease, Inc.)



@ A proposed restricted criterion for selecting the follow-up runs:

Daug = argminD*e’Raugg(D* U Dbase)

@ Advantages:

e This criterion uses all the available data from the first experiment.

o All follow-up runs are forced to be in the new region.

e Unresolved Issue: Blocking may require that at least one follow-up
run be contained in the old region.

o Disadvantage: Somewhat complicated to implement.
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@ Conclusion
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Other Issues

@ This is an interesting problem that often arises in practice, with few
known solutions. Some other related problems are:

Shrinking the design space?

Selection of runs and evaluation of follow-up design.

Extensions to split-plot, strip-plot, and combined designs.

Generalization to all constrained design spaces (e.g. RSM).
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Thanks for listening!

martin@statease.com
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