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Definitions

Supersaturated Designs

Two-level supersaturated designs (SSDs) use n < k + 1 runs to examine k factors. For
example, the Bayesian D-optimal design, D, uses n = 6 runs to examine k = 9 factors.
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Definitions

Supersaturated Designs

Another situation where “supersaturation” can occur is if the total number of effects that one
wishes to examine, p, is greater than the number runs n. For example, the n =12 and k =6
two-level Bayesian D-optimal design,
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1101 1 1 -1
1411 S11 1
101 -1 1 -1 -1
Di=1.47 1 1+ 1 1 21
1021 241 o-11 -1
1 -1 -1 1 -1 1
101 -1 Z1 -1 1
1211 -1 -1 41
1 -1 -1 -1 -1 1

includes another 15 columns if main effects and two-factor interactions are screened. Making
the model matrix, X, n=12 by p =21+ 1.



Definitions

Notation

k=number of factors

n=number of runs

p=number of effects

D=design matrix

X=model matrix

sjj=off diagonal elements of X'X

a=number of truly active factors in simulation

S/N=signal to noise ratio for the truly active factors in simulation

Number of correctly identified active factors
a

Power=

Number inactive factors found to be active
(k—a)

Type | Error=

FDR= Number of inactive factors found to be active
~ Total Number of Effects found to be active
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What size SSD is reasonable?

Effect Sparsity

Fitting the standard linear model y = X3 + ¢ is problematic.

Experimenters must operate under the assumption of effect sparsity to use a SSD as a
screening experiment.



What size SSD is reasonable?

What is Effect Sparsity?
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What size SSD is reasonable?

What is Effect Sparsity in an SSD?
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Number Active to n Ratio
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What size SSD is reasonable?

“Supersaturated” can a Design be?
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Design Size

“The ratio of factors to runs should be less
than 2."
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k to n Ratio
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How should the design be constructed?

Construction Criteria

o E(s?)-optimality [1]

E(s?) = ﬁ Z 55

2<i<j

@ Bayesian D-optimality [2]
dp = |X'X + K /72|M/ (k)

0 01><k
K= .
<0k><1 Ikxk)

where



How should the design be constructed?

Construction Criteria, cont.

o Constrained Positive Var(s)-optimality [3]

2 2
v — E(s?)— E(s)? = — % 2_ | E ij
ar(s) (s°) — E(s) Kk(k + 1) lgijsu k(k +1) 1<’_<J_SJ

subject to

E(s*)(D")
EE(SZ) = W >cC

E(s)>0

16 /58



How should the design be constructed?

Why does construction matter for analysis?
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How should the design be constructed?

Structure Influences Analysis

Average Power, Type | Error and FDR for 17 SSDs-Effect Directions Known
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How should the design be constructed?

Structure Influences Analysis

Average Power, Type | Error and FDR for 17 SSDs-Effect Directions Unknown
Scenario
a=9, S/N=2 to

a=3, S/N=5 a=4, S/N=4 a=6, S/N=3 10
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Does construction matter for 2fi's?

Interactions

Recall the n = 12 and k = 6 two-level Bayesian D-optimal design,

1 1
1 1
1 1
1 -1
-1 -1
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which is not a supersaturated design until you
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consider the addition of



Does construction matter for 2fi's?

Interactions

the 15 interaction columns:
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Interactions

Does construction matter for 2fi's?

Or we might have the case where the design matrix is already saturated, such as the n=12,
k=16 design below, and interactions are to be considered in the analysis.
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Does construction matter for 2fi's?

Construction of SSDs for Interactions

@ Consider the entire all of the p columns in the model matrix, X, simultaneously.

@ Consider the k main effects and (’2‘) interaction columns in the model matrix, X,
separately.



Does construction matter for 2fi's?

Proposed Construction Criteria: Considering all Columns in X

o Bayesian D-optimality including 2fi's

ép = |X'X + K/T2|1/(1+P)

0 01><
K= P.
<0px1 Ipxp)

e Unbalanced E(s?)-optimality including 2fi's

2
E(Sz) = m Z 55

1<i<y

where



Does construction matter for 2fi's?

Proposed Construction Criteria: Considering all Columns in X

o Constrained Positive Var(s)-optimality including 2fi's

2
2 2
Var(s) = E(s?) — E(s)? = —— 2| —— si
p(p+1) z;j \plp+1) 1;}, /
subject to
E(s*)(D*)
e = E)D) ¢

E(s)>0

where D* is the unbalanced E(s?)-optimal including 2fi design, see slide 25.
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Proposed Construction Criteria: Main Effects and Interactions Separate

The X’X matrix can be divided as such:

Main Effects Main Effects X Interactions

X'X =

Main Effects X Interactions Interactions




Does construction matter for 2fi's?

Proposed Construction Criteria: Main Effects and Interactions Separate

We use a Var(s) minimization for the main effects and an E(s?) minimization for the other
elements (Main Effects by Interactions and Interactions). The two criteria are weighted
accordingly:

min:  aVar(s) + (1 — a)E(s%)
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o Constrained Positive Var(s)cofumns
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Proposed Construction Criteria: Main Effects and Interactions Separate

We use a Var(s) minimization for the main effects and an E(s?) minimization for the other
elements (Main Effects by Interactions and Interactions). The two criteria are weighted
accordingly:

min:  aVar(s) + (1 — a)E(s%)
When « is based on the number of columns:

o Constrained Positive Var(s)cofumns

And when a=0.5:

o Constrained Positive Var(s)equar



Does construction matter for 2fi's?

Proposed Construction Criteria: Main Effects and Interactions Separate

We use a Var(s) minimization for the main effects and an E(s?) minimization for the other
elements (Main Effects by Interactions and Interactions). The two criteria are weighted
accordingly:

min:  aVar(s) + (1 — a)E(s%)
When « is based on the number of columns:

o Constrained Positive Var(s)cofumns

And when a=0.5:

o Constrained Positive Var(s)equar

Both require a specified E(s?) efficiency, ¢ and E(s) > 0.
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Comparing Construction Criteria

Bayes D 2fi Unbal E(s?) 2fi Var(s) 2fi(90) Var(s) Col Wts(80)  Var(s) Eq Wts(80)
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Comparing Construction: Impact of ¢

Var(s) 2fi (20) Var(s) 2fi (90)



Does construction matter for 2fi's?

Some Simulation Details

We based the number of active main effect and interaction columns on results of Li et al. [4].
For each of 10,000 iterations:

@ Randomly select m active main effect columns where m = 0.41 x k

@ Active interactions are chosen based on the following:

o Strong heredity, P(AB active | A and B)=0.33
o Weak heredity, P(AB active | A or B)=0.045
o No heredity, P(AB active | Neither A or B)=0.0048

© Assign a true effect size to the active columns where main effects are positive and the
signs of interaction coefficients are negative with a probability of 0.17.

@ Inactive effect sizes were sampled from abs(N(0,0.2)) with signs flipped as described in
number 2.
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p to n Ratio
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Does construction matter for 2fi's?

How big does the signal have to be?

5 Small SSDs w/ Interactions: Sensitivity Analysis
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Does construction matter for 2fi's?

Simulation Results (S/N=3)

Average Power, Type | Error and FDR for 18 SSDs w/ Interactions

1.000
0.900
0.800
0.700 -
0.600
0.020 ’\/'\‘\/
0.015
0.010
0.005
0.000

Power

Type |

FDR
oo
o
o



Does construction matter for 2fi's?

Simulation Results (S/N=3)

Power by Effect for 18 SSDs w/ Interactions
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How should the experiment be analyzed?

Methods used to Analyze SSDs

Regression Methods

@ Forward Selection [5]

@ Stepwise Selection [6]

@ All Subsets Regression [6]

@ Singular value decomposition
principal regression (SVDPR) [7]

Shrinkage Methods

@ Dantzig Selector [8]
@ LASSO [9]

@ Smoothly Clipped Absolute
Deviation (SCAD) [10]

@ Sure Independence Screening

(SIS) [11]

Other Methods

Simulated Annealing (SA) [9]
Model Averaging (MA) [12]

Bayesian Methods (SVSS, CGS,
SVSS/IBF) [13], [14]

Partial Least Squares Variable
Selection (PLSVS) [15]

Stepwise Response Refinement
Screener (SRRS) [16]



How should the experiment be analyzed?

Results of Simulation Studies

un

A comparison of methods: “x" indicates the method was included in the study. “1"” indicates best
performer, “2" indicates the method out performed “1" under certain conditions.

Study Forward Dantzig Bayesian LASSO SCAD SA PLSVS SVDPR MA SRRS
Selection

Marley and Woods (2010) x 1 2

Dragulji¢ et al. (2014) 1 x x x

Chen et al. (2013) 1 2 (CGS) x x

Phoa (2014) 1 x x x x 2

Weese et al. (2015) x 1

Weese et al. (2017) X 1
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The Dantzig Selector

[ The Dantzig Selector

Journal of Statistical Planning and Inference /8 |S the So|uti0n tO the /1—regu|arizati0n pr0b|em2

lournal homepage: www.elsevier.com/locate/jspi

N ~
H t X
Analysis of supersaturated designs via the Dantzig selector min ||5 || 1 St ||X (.y - ﬁ) HOO S 5

Frederick KH. Phoa, Yu-Hui Pan, Hongquan Xu*

Dcpamen o St Uniersty of o s Agees A 9095155 USA

R 13 Novenbec 200
Reeived nrevid form

RO n > Tao 2107, The Dt e st
vl o 21 November 2008 csimation

= with the methed Simulation shows tat this method performs well compared 1o existing
condiy 6305, 6207 02008 lsevier V. All ighs esrved.
Kepwords

[ —

Sipercuued desgn

1. Introduction

As science and technology have advanced to 3 higher level nowadays,investigators are becoming more interested in and

The cost of
costy, even u
.

1 Build sis and
% the best computer system with the best algorithms. To address the challenges posed by this technological
focused on eir and

mathematicalnovelsy.

theuse

Many

15 years.for example Lin(1993,
1995) W (1993), Nguyen (1996), Chen (1997, Li and Wa (1997), Tang and Wu (1997, Fang t a. (2000), utle et al. (2001).
Bulutoglu and Cheng (2004). Liu and Dean (2004), Xu and Wu (2005), Georgiou et al. 2006).Ai et al.(2007). Bulutoglu (2007), 20 / £8
Liu et al. (2007a.b) T 1 (200 39 /58




How should the experiment be analyzed?

The Automated Gauss-Dantzig Selector

min[|Alle st Xy = XB)[lo < (1)

@ Let 6 vary from 0 to dp = max|x}y| and where x; is the it column of X.
@ For each value of §, solve the linear program in equation (1).
@ Coefficient estimates greater than a user specified threshold value, -, are retained.

@ Fit a linear model using the factors retained in step (3) and calculate the value of the
selection statistic (e.g. AlCc, BIC, etc.)

© The model at the value § which produces the best value of the selection statistic is chosen.

40 /58



How should the experiment be analyzed?

Using the Dantzig Selector

Phoa et al. (2009) recommend using a Profile Plot of the coefficient estimates vs. § to find the
important factors in a single experiment.
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How should the experiment be analyzed?

Using the Dantzig Selector

Phoa et al. (2009) recommend using a Profile Plot of the coefficient estimates vs. § to find the
important factors in a single experiment.

Using the automated procedure on slide 40 is not recommend for use in a single experiment
analysis for the following reasons:

© The specification of ~.
@ The choice of §.

41 /58
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How should the experiment be analyzed?

Example 1: Easy

5.0-X11

o
=
(]

Design: n =8, k =12

k] constrained-positive Var(s)-optimal
£ with ¢ = 0.8

t ool /N = 5 with + assigned
£ ao- @ a=3,5/N=5wi assigne:

% Xzz:fv randomly.

(8]

@ Inactive coefficients sampled from
N(0,0.2)

@ §=0to do = max(|x]y|).

Delta
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Example 2: Effect Directions Unknown
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How should the experiment be analyzed?

Example 2: Effect Directions Unknown

Coefficient Estimate

[

@ Design: n=38, k=12
constrained-positive Var(s)-optimal
with ¢ = 0.8

@ a=06,S/N = 3 with + assigned
randomly.

X5

Xe

@ Inactive coefficients sampled from
N(0,0.2)

X11

Delta
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How should the experiment be analyzed?

Example 2: Effect Directions Known
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How should the experiment be analyzed?

Example 2: Effect Directions Known

X10
X1
"
@ @ Design: n=38, k=12
E . Constrained-positive Var(s)-optimal
ﬁ | with ¢ = 0.8
éz, @ a=06,S/N =3 now with all positive
S signs.
X6
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abs(N(0,0.2))
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DI 26 40
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How should the experiment be analyzed?

Example 3: Interactions Included
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How should the experiment be analyzed?

Example 3: Interactions Included

@ Design: n=12, k=6
Constrained-positive 2fi Var(s)-optimal
with ¢ = 0.9

Active effects generated according to
probabilities on slide 31 and S/N = 3.

@ Assume main effect directions are

2%1x2

75
(]

Coefficient Estimate
g% &
S &

known.
2 . ..
@ Inactive coefficients sampled from
o abs(N(0,0.2)) with signs assigned as
B described on slide 31.
0 10 20 3'0 40 50

Delta
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How should the experiment be analyzed?

Example 4: Interactions Included
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How should the experiment be analyzed?

Example 4: Interactions Included

@ Design: n=14, k=15
Constrained-positive 2fi Var(s)-optimal
with ¢ = 0.9

@ Active effects generated according to
probabilities on slide 31 and S/N = 3.

@ Assume main effect directions are
known.

Coefficient Estimate

@ Inactive coefficients sampled from
abs(N(0,0.2)) with signs assigned as
described on slide 31.

Delta

51/58
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© What size SSD is reasonable?
e k/n < 2is a good rule of thumb.
e Evidence is in favor of n/a > 3.
o For designs including interactions consider the p to n ratio.
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Conclusion

© What size SSD is reasonable?
e k/n < 2is a good rule of thumb.
e Evidence is in favor of n/a > 3.
o For designs including interactions consider the p to n ratio.

@ How should the design be constructed?

o For consideration of main effects
@ Using the constrained-positive Var(s)-optimality with ¢ = 0.8.
o Attempt to guess your effect directions a priori.
o Even all effect directions are misspecified, performance will be equivalent to using a Bayesian

D-optimal or a balanced E(s?)-optimal design [3].

o For consideration of main effects and interactions

@ Design size is more important than construction method.
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Conclusions

Conclusion

© What size SSD is reasonable?
e k/n < 2is a good rule of thumb.
e Evidence is in favor of n/a > 3.
o For designs including interactions consider the p to n ratio.

@ How should the design be constructed?

o For consideration of main effects
@ Using the constrained-positive Var(s)-optimality with ¢ = 0.8.
o Attempt to guess your effect directions a priori.
o Even all effect directions are misspecified, performance will be equivalent to using a Bayesian

D-optimal or a balanced E(s?)-optimal design [3].

o For consideration of main effects and interactions

@ Design size is more important than construction method.

© How should the experiment be analyzed?
o Use the Dantzig selector and a Profile Plot.
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