A Bayesian Approach to Diagnostics for Multivariate Control Charts

Fall Technical Conference
Philadelphia, PA
October 2017

Steven E. Rigdon
Department of Biostatistics
Saint Louis University

Robert Steward
National Geospatial-Intelligence Agency
Saint Louis, MO
Rong Pan
School of Computing, Informatics and Decision Systems Engineering
Arizona State University

Outline

- Motivating example
- MCMC Overview
- Reversible Jump MCMC Overview
- RJMCMC for Multivariate Change Pont Problem

Multivariate Process Control

- Problem motivated by statistical process control (SPC)
- Multiple (p) quality characteristics are measured on each item
- Goal: Simultaneously monitor all measured quality characteristics.
- Use a multivariate control chart (e.g. Hotelling's T^{2} chart, or multivariate exponentially weighted moving average, or ...)

Diagnostics for Multivariate Control Chart

Model: $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\tau} \sim N\left(\boldsymbol{\mu}_{\tau}, \Sigma\right), \quad \boldsymbol{X}_{\tau+1}, \boldsymbol{X}_{\tau+2}, \ldots, \boldsymbol{X}_{N} \sim N\left(\boldsymbol{\mu}_{\tau+1}, \Sigma\right)$
If the multivariate chart signals a change (point above upper control limit on control chart), then the questions arise

1. When did the change occur?
2. Which among the p components changed?
3. For those components that shifted, what are the new values for the mean?

Example (Simulated) to Illustrate the Problem

- $p=6$
- Mean vector before the shift: $\mu_{\tau}=(0,0,0,0,0,0)$.
- Covariance matrix: 1's on diagonal, 0.3 's on off-diagonal
- First 79 data points in control.
- At time 80, process mean shifts to $\mu_{\tau+1}=(0,0,0,0,0.75,2.00)$.
- Monitor process using Hotelling T^{2}.

Figure : A T^{2} control chart applied to simulated data. A change-point to the mean vector occurs at time point 80 and the control chart signals an alarm at the 99% confidence level $(\mathrm{UCL}=16.8)$ at time point 91.

Figure : A T^{2} control chart applied to simulated data. A change-point to the mean vector occurs at time point 80 and the control chart signals an alarm at the 99% confidence level $(\mathrm{UCL}=16.8)$ at time point 91.

Now ... diagnostics. Which components shifted?

- There are $2^{6}=64$ possible models
M_{1} : No change
M_{2} : Component 1 mean changes
M_{3} : Component 2 mean changes
M_{22} : Components 5 and 6 mean changes
M_{64} : All component means change

Now ... diagnostics. Which components shifted?

- There are $2^{6}=64$ possible models
M_{1} : No change
M_{2} : Component 1 mean changes
M_{3} : Component 2 mean changes
M_{22} : Components 5 and 6 mean changes \leftarrow TRUE MODEL
M_{64} : All component means change

Posterior Probability for Change Point τ

Histogram of Posterior Probabilities

Posterior Probability for Change Point τ

Histogram of Posterior Probabilities

Posterior

 Probability for τ

Posterior

 Probability for τPosterior Probability for change-point Iocation of Model 22

Joint Posterior of Model and Change Point (with jitter)

Estimate of Means after Change

Component	Post-change mean estimate	95\% credible interval	True value
5	0.71	$(0.65,0.91)$	0.75
6	1.96	$(1.73,2.10)$	2.00

Reversible Jump Markov Chain Monte Carlo (RJMCMC)

- Often used for model selection
- Used when parameter space for models has varying dimension

Overview of MCMC (Metropolis-Hastings)

- \boldsymbol{X} has $\operatorname{pdf} f(\boldsymbol{x} \mid \boldsymbol{\theta}), \quad \boldsymbol{\theta}$ has prior $p(\boldsymbol{\theta})$
- To simulate from the posterior $p(\boldsymbol{\theta} \mid \boldsymbol{x})$

1. Start with $\boldsymbol{\theta}^{(0)}$. Set $k=1$
2. Simulate a proposal $\boldsymbol{\theta}^{*}$ from proposal distribution $g()$
3. Accept the move to proposal with probability

$$
\alpha=\min \left(1, \frac{g\left(\boldsymbol{\theta}^{*}\right) p\left(x \mid \boldsymbol{\theta}^{*}\right)}{g\left(\boldsymbol{\theta}^{(k-1)}\right) p\left(x \mid \boldsymbol{\theta}^{(k-1)}\right)}\right)
$$

4. $\boldsymbol{\theta}^{(k)}=\boldsymbol{\theta}^{*} \mathrm{w} / \mathrm{prob} \alpha$, and $\boldsymbol{\theta}^{(k)}=\boldsymbol{\theta}^{(k-1)} \mathrm{w} /$ prob $1-\alpha$
5. Repeat Steps 2-4 creating a sequence $\boldsymbol{\theta}^{(0)}, \boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots$

Overview of MCMC (Metropolis-Hastings)

- \boldsymbol{X} has $\operatorname{pdf} f(\boldsymbol{x} \mid \boldsymbol{\theta}), \quad \boldsymbol{\theta}$ has prior $p(\boldsymbol{\theta})$
- To simulate from the posterior $p(\boldsymbol{\theta} \mid \boldsymbol{x})$

1. Start with $\boldsymbol{\theta}^{(0)}$. Set $k=1$

THEOREM

The steady state distribution of the sequence $\boldsymbol{\theta}^{(0)}, \boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots$ is the posterior distribution $p(\boldsymbol{\theta} \mid \boldsymbol{x})$.
2. Simulate a proposal $\boldsymbol{\theta}^{*}$ from proposal distribution $g()$
3. Accept the move to proposal with probability

$$
\alpha=\min \left(1, \frac{g\left(\boldsymbol{\theta}^{*}\right) p\left(\boldsymbol{x} \mid \boldsymbol{\theta}^{*}\right)}{g\left(\boldsymbol{\theta}^{(k-1)}\right) p\left(\boldsymbol{x} \mid \boldsymbol{\theta}^{(k-1)}\right)}\right)
$$

4. $\boldsymbol{\theta}^{(k)}=\boldsymbol{\theta}^{*} \mathrm{w} / \mathrm{prob} \alpha$, and $\boldsymbol{\theta}^{(k)}=\boldsymbol{\theta}^{(k-1)} \mathrm{w} /$ prob $1-\alpha$
5. Repeat Steps 2-4 creating a sequence $\boldsymbol{\theta}^{(0)}, \boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots$

Example of MCMC in 1-dim Change Point Problem

Dimensions Vary in Multivariate Case

- Suppose $p=2$. IC mean $\boldsymbol{\mu}_{0}=[0,0]^{\prime}$. IC covariance $\Sigma=I$.
- Possible Models

1. No change. Parameters: none
2. Only component 1 shifts. New mean is $\boldsymbol{\mu}_{1}=\left[\mu_{21}, 0\right]^{\prime}$ Parameters: τ_{2}, μ_{21}
3. Only component 2 shifts. New mean is $\boldsymbol{\mu}_{1}=\left[0, \mu_{32}\right]^{\prime}$ Parameters: τ_{3}, μ_{32}
4. Both components shift. New mean is $\boldsymbol{\mu}_{1}=\left[\mu_{41}, \mu_{42}\right]^{\prime}$ Parameters: $\tau_{4}, \mu_{41}, \mu_{42}$

Dimensions Vary in Multivariate Case

- Suppose $p=2$. IC mean $\boldsymbol{\mu}_{0}=[0,0]^{\prime}$. IC covariance $\Sigma=I$.
- Possible Models

1. No change. Parameters: none
2. Only component 1 shifts. New mean is $\boldsymbol{\mu}_{1}=\left[\mu_{21}, 0\right]^{\prime}$ Parameters: τ_{2}, μ_{21}
3. Only component 2 shifts. New mean is $\boldsymbol{\mu}_{1}=\left[0, \mu_{32}\right]^{\prime}$ Parameters: τ_{3}, μ_{32}
4. Both components shift. New mean is $\boldsymbol{\mu}_{1}=\left[\mu_{41}, \mu_{42}\right]^{\prime}$ Parameters: $\tau_{4}, \mu_{41}, \mu_{42}$

Dimensions of Parameter Space Vary

- The number of unknown parameters varies, depending on the model.
- "The number of things you don't know is one of the things you don't know." (Hastie, 1995)
- Green (1995) suggested method for transdimensional parameter space models, and called it Reversible Jump Markov chain Monte Carlo (RJMCMC).

Overview of Reversible Jump MCMC

- Consider models $M_{k}, k=1,2, \ldots, L$.
- Model M_{k} has parameter $\boldsymbol{\theta}_{k}$.
- The model specific posterior distribution is

$$
\pi_{k}\left(\boldsymbol{\theta}_{k} \mid \boldsymbol{D}, M_{k}\right)=\frac{p_{0}\left(\boldsymbol{\theta}_{k} \mid M_{k}\right) L\left(\boldsymbol{D} \mid \boldsymbol{\theta}_{k}, M_{k}\right)}{p_{k}\left(\boldsymbol{D} \mid M_{k}\right)}
$$

Treat the model as an additional parameter.

- Treat the model M_{k} as an additional parameter.
- S_{k} denotes parameter space for M_{k}
- $S=\bigcup_{k=1}^{L}\left\{M_{k}\right\} \times S_{k}$
- Goal: Sample from S in an MCMC fashion to produce a chain that converges to the posterior distribution

$$
\pi\left(M_{k}, \boldsymbol{\theta}_{k} \mid \boldsymbol{D}\right) \propto p_{0}\left(M_{k}\right) p_{0}\left(\boldsymbol{\theta}_{k} \mid M_{k}\right) L\left(\boldsymbol{D} \mid M_{k}, \boldsymbol{\theta}_{k}\right)
$$

Overview of RJMCMC

- Propose move from model M_{k} with parameter x to model $M_{k^{\prime}}$ with parameter x^{\prime}
- Chain must be aperiodic and irreducible, and the detailed balance equation must be satisfied:

$$
\pi(x) j\left(M_{k} \mid M_{k^{\prime}}\right) g(u) \alpha\left(x, x^{\prime}\right)=\pi\left(x^{\prime}\right) j\left(M_{k} \mid M_{k}\right) g^{\prime}\left(u^{\prime}\right) \alpha\left(x^{\prime}, x\right)\left|\frac{\partial\left(x^{\prime}, u^{\prime}\right)}{\partial(x, u)}\right|
$$

u is a "padding" variable that accounts for the difference in dimension between proposed models.

Acceptance Probability Is

$$
\alpha\left(x, x^{\prime}\right)=\min \left(1, \frac{\pi\left(x^{\prime}\right) j\left(M_{k^{\prime}} \mid M_{k}\right) g^{\prime}\left(u^{\prime}\right)}{\pi(x) j\left(M_{k} \mid M_{k^{\prime}}\right) g(u)}|J|\right)
$$

Dimension Matching

$$
\begin{array}{ll}
n_{k}=\text { dimension of } x & r_{k}=\text { dimension of } u \\
n_{k}^{\prime}=\text { dimension of } x^{\prime} & r_{k}^{\prime}=\text { dimension of } u^{\prime}
\end{array}
$$

$$
n_{k}+r_{k}=n_{k}^{\prime}+r_{k}^{\prime}
$$

RJMCMC Algorithm (Sketch)

1. Choose initial conditions (state) $x_{0}=\left(M_{k_{0}}, \boldsymbol{\mu}_{k_{0}}, \tau_{k_{0}}\right)$
2. Within-model MH update of $\left(\boldsymbol{\mu}_{k_{0}}, \tau_{k_{0}}\right)$
3. Propose jump to model $M_{k^{\prime}}$ with PMF $j\left(M_{k^{\prime}} \mid M_{k}\right)$
4. If jumping to a model with more parameters, simulate u
5. Accept move to $x_{0}^{\prime}=\left(M_{k_{0}}, \boldsymbol{\mu}_{k_{0}}, \tau_{k_{0}}\right)$ with probability $\alpha\left(x_{0}, x_{0}^{\prime}\right)$
6. Repeat steps $2-5$ until MC convergence. Then run additional simulations to explore posterior.

Possible implementation of RJMCMC

- Within-model MH (standard stuff)
- $\tau \sim \mathrm{DU}$ (centered at current τ)
- Model DU on all models that add one component or remove one component.

Example: $p=4, M=\{1,4\}$:
Possible proposed models: $\{1,2,4\},\{1,3,4\},\{1\},\{4\}$

Smaller model to larger model ...

- Suppose we are in state $M=\{1\}$ and we propose to move to model $\{1,4\}$.

Current state (within model 2, \{1\})

$$
\begin{gathered}
\tilde{\theta}_{k}=\left[\mu_{2,2+1, \tau}^{1}\right] \\
\downarrow
\end{gathered}
$$

maps to (within model $8,\{1,4\}$)

$$
\tilde{\theta}_{k^{\prime}}=\left[\mu_{8, \tau+1}^{1}, \mu_{8, \tau+1}^{4}, \tau\right]
$$

Smaller model to larger model ...

- Suppose we are in state $M=\{1\}$ and we propose to move to model $\{1,4\}$.

Current state (within model 2, \{1\})

$$
\tilde{\theta}_{k}=\left[\mu_{2, \tau+1}^{1}, \tau\right]
$$

I
maps to (within model $8,\{1,4\}$)

$$
\tilde{\theta}_{k^{\prime}}=\left[\mu_{8, \tau+1}^{1}, \mu_{8, \tau+1}^{4}, \tau\right]
$$

Smaller model to larger model ...

- Suppose we are in state $M=\{1\}$ and we propose to move to model $\{1,4\}$.

Current state (within model 2, \{1\})

$$
u \sim N\left(\text { last visit, } \sigma_{u}^{2}\right)
$$

maps to (within model $8,\{1,4\}$)

$$
\tilde{\theta}_{k}=\left[\mu_{2, \tau+1}^{1}, u, \tau\right]
$$
 , τ]

$$
\tilde{\theta}_{k^{\prime}}=\left[\mu_{8, \tau+1}^{1}, \mu_{8, \tau+1}^{4}, \tau\right]
$$

Larger model to smaller model ...

- Suppose we are in state $M=\{1,4\}$ and we propose to move to model $\{1\}$.

Current state (within model $8,\{1,4\}$)

$$
\tilde{\theta}_{k}=\left[\mu_{8, \tau+1}^{1}, \mu_{8, \tau+1}^{4}, \tau\right]
$$

maps to (within model $2,\{1\}$)

$$
\tilde{\theta}_{k^{\prime}}=\left[\mu_{2, \tau+1}^{1}, u, \tau\right]
$$

Model states

$$
\begin{array}{ll}
& \boldsymbol{x}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{\tau} \sim N\left(\boldsymbol{\mu}_{\tau}, \Sigma\right) \\
\text { Model } & \boldsymbol{X}_{\tau+1}, \boldsymbol{X}_{\tau+2}, \ldots, \boldsymbol{X}_{N} \sim N\left(\boldsymbol{\mu}_{\tau+1}, \Sigma\right)
\end{array}
$$

Possible

 Assumptions1. known: $\boldsymbol{\mu}_{\tau}, \Sigma$
unknown: $\tau, \boldsymbol{\mu}_{\tau+1}$
(unrealistic, but easy to explain)
2. known: Σ
unknown: $\tau, \mu_{\tau}, \mu_{\tau+1}$
(stepping stone)
3. known: nothing unknown: $\tau, \boldsymbol{\mu}_{\tau}, \boldsymbol{\mu}_{\tau+1}, \Sigma$ (realistic, but messy)

Summary

- Motivated by multivariate SPC
- Single model to address

When did the change occur?
Which components changed?
What are the new means?

- Extensions to multiple change points by
(even messier) MCMC
Binary Segmentation
But ... SPC is often looking only for single change

