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Outline 

• Motivating example

• MCMC Overview

• Reversible Jump MCMC Overview

• RJMCMC for Multivariate Change Pont Problem
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Multivariate Process Control

• Problem motivated by statistical process control (SPC)

• Multiple (𝑝) quality characteristics are measured on each item

• Goal: Simultaneously monitor all measured quality characteristics.

• Use a multivariate control chart (e.g. Hotelling’s 𝑇2 chart, or 

multivariate exponentially weighted moving average, or …)
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Diagnostics for Multivariate Control Chart

Model:   𝑿1, 𝑿2, … , 𝑿𝜏~𝑁 𝝁𝜏, Σ ,     𝑿𝜏+1, 𝑿𝜏+2, … , 𝑿𝑁~𝑁(𝝁𝜏+1, Σ)

If the multivariate chart signals a change (point above upper control limit 
on control chart), then the questions arise

1. When did the change occur?

2. Which among the 𝑝 components changed?

3. For those components that shifted, what are the new values for the 

mean?

4



Example (Simulated) to Illustrate the Problem

• 𝑝 = 6

• Mean vector before the shift:  𝜇𝜏 = 0,0,0,0,0,0 . 

• Covariance matrix: 1’s on diagonal, 0.3’s on off-diagonal

• First 79 data points in control.

• At time 80, process mean shifts to 𝜇𝜏+1 = 0,0,0,0,0.75,2.00 . 

• Monitor process using Hotelling 𝑇2.
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Signal at 
time 91.
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Now … diagnostics.  
Which components shifted?

• There are 26 = 64 possible models

𝑀1: No change

𝑀2: Component 1 mean changes

𝑀3: Component 2 mean changes

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

𝑀22: Components 5 and 6 mean changes

∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙

𝑀64: All component means change
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Posterior Probability for Change Point 𝜏
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Posterior Probability for Change Point 𝜏

Model 22: 
Components 5 and 6.
Post. Prob. = 0.45
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Model 7: 
Component 6.
Post. Prob. = 0.17



Posterior 
Probability 
for 𝜏

12



Posterior 
Probability 
for 𝜏

Posterior Mode 
is 𝜏 = 80
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Joint 
Posterior of 
Model and 
Change 
Point 
(with jitter)
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Estimate of Means after Change

Component Post-change mean 
estimate

95% credible 
interval

True value

5 0.71 (0.65,0.91) 0.75

6 1.96 (1.73,2.10) 2.00
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Reversible Jump Markov Chain Monte Carlo
(RJMCMC)

• Often used for model selection

• Used when parameter space for models has varying dimension
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Overview of MCMC (Metropolis-Hastings)

• 𝑿 has pdf 𝑓(𝒙|𝜽),       𝜽 has prior 𝑝(𝜽)

• To simulate from the posterior 𝑝(𝜽|𝒙)

1. Start with 𝜽(0).  Set 𝑘 = 1

2. Simulate a proposal 𝜽∗ from proposal distribution 𝑔()

3. Accept the move to proposal with probability       

𝛼 = min 1,
𝑔 𝜽∗ 𝑝(𝒙|𝜽∗)

𝑔 𝜽 𝑘−1 𝑝(𝒙|𝜽(𝑘−1))

4. 𝜽(𝑘) = 𝜽∗ w/prob 𝛼, and 𝜽(𝑘) = 𝜽(𝑘−1) w/prob 1 − 𝛼

5. Repeat Steps 2-4 creating a sequence 𝜽(0), 𝜽(1), 𝜽(2), …
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THEOREM
The steady state distribution of the 

sequence 𝜽(0), 𝜽(1), 𝜽(2), … is the 
posterior distribution 𝑝(𝜽|𝒙).



Example of MCMC in 1-dim Change Point Problem

𝑋1, 𝑋2, … , 𝑋𝜏 ~ 𝑁 0,1

𝑋𝜏+1, 𝑋𝜏+2, … , 𝑋𝑁 ~ 𝑁(𝜇, 1)

Simulated data with 𝜏 = 40
and 𝜇 = 1

Priors:  𝜏~𝐷𝑈(1, 𝑁)

𝜇~𝑁(0, large var.)
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Dimensions Vary in Multivariate Case

• Suppose 𝑝 = 2. IC mean 𝝁0 = [0,0]′.  IC covariance Σ = 𝐼.

• Possible Models

1. No change.  Parameters: none

2. Only component 1 shifts. New mean is 𝝁1 = [𝜇21, 0]′
Parameters:  𝜏2, 𝜇21

3. Only component 2 shifts. New mean is 𝝁1 = [0, 𝜇32]′
Parameters:  𝜏3, 𝜇32

4. Both components shift.  New mean is   𝝁1 = [𝜇41, 𝜇42]′
Parameters:  𝜏4, 𝜇41 , 𝜇42

24



Dimensions Vary in Multivariate Case

• Suppose 𝑝 = 2. IC mean 𝝁0 = [0,0]′.  IC covariance Σ = 𝐼.

• Possible Models

1. No change.  Parameters: none

2. Only component 1 shifts. New mean is 𝝁1 = [𝜇21, 0]′
Parameters:  𝜏2, 𝜇21

3. Only component 2 shifts. New mean is 𝝁1 = [0, 𝜇32]′
Parameters:  𝜏3, 𝜇32

4. Both components shift.  New mean is   𝝁1 = [𝜇41, 𝜇42]′
Parameters:  𝜏4, 𝜇41 , 𝜇42

25

dim = 0

dim = 2

dim = 2

dim = 3



Dimensions of Parameter Space Vary

• The number of unknown parameters varies, depending on the model.

• “The number of things you don’t know is one of the things you don’t 

know.”  (Hastie, 1995)

• Green (1995) suggested method for transdimensional parameter 

space models, and called it Reversible Jump Markov chain Monte 

Carlo (RJMCMC).
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Overview of Reversible Jump MCMC

• Consider models 𝑀𝑘 , 𝑘 = 1,2, … , 𝐿.

• Model 𝑀𝑘 has parameter 𝜽𝑘 .

• The model specific posterior distribution is

𝜋𝑘(𝜽𝑘 |𝑫,𝑀𝑘 ) =
𝑝0 𝜽𝑘 𝑀𝑘 𝐿(𝑫|𝜽𝑘 , 𝑀𝑘)

𝑝𝑘(𝑫|𝑀𝑘)
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Treat the model as an additional parameter.

• Treat the model 𝑀𝑘 as an additional parameter.

• 𝑆𝑘 denotes parameter space for 𝑀𝑘

• 𝑆 = 𝑘=1ڂ
𝐿 {𝑀𝑘} × 𝑆

𝑘

• Goal:  Sample from 𝑆 in an MCMC fashion to produce a chain that 

converges to the posterior distribution 

𝜋 𝑀𝑘 , 𝜽𝑘 𝑫 ∝ 𝑝0 𝑀𝑘 𝑝0 𝜽𝑘 𝑀𝑘 𝐿(𝑫|𝑀𝑘 , 𝜽𝑘)
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Overview of RJMCMC

• Propose move from model 𝑀𝑘 with parameter 𝑥 to model 𝑀𝑘′ with 

parameter 𝑥′

• Chain must be aperiodic and irreducible, and the detailed balance equation 

must be satisfied:

𝜋 𝑥 𝑗 𝑀𝑘 𝑀𝑘′ 𝑔 𝑢 𝛼 𝑥, 𝑥′ = 𝜋 𝑥′ 𝑗 𝑀𝑘′ 𝑀𝑘 𝑔′(𝑢′)𝛼 𝑥′, 𝑥
𝜕(𝑥′, 𝑢′)

𝜕(𝑥, 𝑢)

𝑢 is a “padding” variable that accounts for the difference in dimension between 

proposed models.
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Acceptance Probability Is

𝛼 𝑥, 𝑥′ = min 1,
𝜋 𝑥′ 𝑗 𝑀𝑘′ 𝑀𝑘 𝑔′(𝑢′)

𝜋 𝑥 𝑗 𝑀𝑘 𝑀𝑘′ 𝑔(𝑢)
𝐽

Dimension Matching

𝑛𝑘 = dimension of 𝑥 𝑟𝑘 = dimension of 𝑢
𝑛𝑘
′ = dimension of 𝑥′ 𝑟𝑘

′ = dimension of 𝑢′

𝑛𝑘 + 𝑟𝑘 = 𝑛𝑘
′ + 𝑟𝑘

′
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RJMCMC Algorithm (Sketch)

1. Choose initial conditions (state) 𝑥0 = 𝑀𝑘0 , 𝝁𝑘0 , 𝜏𝑘0

2. Within-model MH update of 𝝁𝑘0 , 𝜏𝑘0

3. Propose jump to model 𝑀𝑘′ with PMF 𝑗 𝑀𝑘′ 𝑀𝑘

4. If jumping to a model with more parameters, simulate 𝑢

5. Accept move to 𝑥0
′ = 𝑀𝑘0 , 𝝁𝑘0 , 𝜏𝑘0 with probability 𝛼 𝑥0, 𝑥0

′

6. Repeat steps 2 – 5 until MC convergence.  Then run additional 

simulations to explore posterior.
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Possible implementation of RJMCMC

• Within-model MH (standard stuff)

• 𝜏 ~ DU(centered at current 𝜏)

• Model DU on all models that add one component or remove one 

component.  

Example:  𝑝 = 4,𝑀 = 1,4 :

Possible proposed models: 1,2,4 , 1,3,4 , 1 , {4}
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Smaller model to larger model …

• Suppose we are in state 𝑀 = {1} and we propose to move to model {1,4}.

Current state (within model 2, {1}) ෨𝜃𝑘 = 𝜇2,𝜏+1
1 , 𝜏

maps to (within model 8, {1,4}) ෨𝜃𝑘′ = 𝜇8,𝜏+1
1 ,𝜇8,𝜏+1

4 , 𝜏
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Smaller model to larger model …

• Suppose we are in state 𝑀 = {1} and we propose to move to model {1,4}.

Current state (within model 2, {1}) ෨𝜃𝑘 = 𝜇2,𝜏+1
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Smaller model to larger model …

• Suppose we are in state 𝑀 = {1} and we propose to move to model {1,4}.

𝑢~𝑁(last visit, 𝜎𝑢
2)

Current state (within model 2, {1}) ෨𝜃𝑘 = 𝜇2,𝜏+1
1 , 𝑢, 𝜏

maps to (within model 8, {1,4}) ෨𝜃𝑘′ = 𝜇8,𝜏+1
1 ,𝜇8,𝜏+1

4 , 𝜏
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Larger model to smaller model …
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• Suppose we are in state 𝑀 = {1,4} and we propose to move to model {1}.

Current state (within model 8, {1,4}) ෨𝜃𝑘 = 𝜇8,𝜏+1
1 ,𝜇8,𝜏+1

4 , 𝜏

maps to (within model 2, {1}) ෨𝜃𝑘′ = 𝜇2,𝜏+1
1 , 𝑢, 𝜏
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Model

Possible 
Assumptions

𝑿1, 𝑿2, … , 𝑿𝜏~𝑁 𝝁𝜏, Σ

𝑿𝜏+1, 𝑿𝜏+2, … , 𝑿𝑁~𝑁(𝝁𝜏+1, Σ)

1. known:  𝝁𝜏, Σ
unknown:  𝜏, 𝝁𝜏+1
(unrealistic, but easy to explain)

2. known:  Σ
unknown:  𝜏, 𝝁𝜏, 𝝁𝜏+1
(stepping stone)

3. known: nothing                          
unknown:  𝜏, 𝝁𝜏, 𝝁𝜏+1, Σ
(realistic, but messy)
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Summary

• Motivated by multivariate SPC

• Single model to address

When did the change occur?

Which components changed?

What are the new means?

• Extensions to multiple change points by

(even messier) MCMC

Binary Segmentation

But … SPC is often looking only for single change
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