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Multivariate Process Control

* Problem motivated by statistical process control (SPC)
* Multiple (p) quality characteristics are measured on each item
* Goal: Simultaneously monitor all measured quality characteristics.

e Use a multivariate control chart (e.g. Hotelling’s T chart, or
multivariate exponentially weighted moving average, or ...)



Diagnostics for Multivariate Control Chart

Model: XlJXZI ""XTNN(”TI Z), XT+1' XT+2' ...,XNNN(ﬂT_l_l, Z)

If the multivariate chart signals a change (point above upper control limit
on control chart), then the questions arise

1. When did the change occur?
2. Which among the p components changed?

3. For those components that shifted, what are the new values for the
mean?



Example (Simulated) to lllustrate the Problem

*p=6
* Mean vector before the shift: u, = (0,0,0,0,0,0).

e Covariance matrix: 1’s on diagonal, 0.3’s on off-diagonal

* First 79 data points in control.

* At time 80, process mean shifts to u,,, = (0,0,0,0,0.75,2.00).

 Monitor process using Hotelling T2.
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Figure : A T2 control chart applied to simulated data. A change-point to the

mean vector occurs at time point 80 and the control chart signals an alarm at the
99% confidence level (UCL=16.8) at time point 91.
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Figure : A T2 control chart applied to simulated data. A change-point to the

mean vector occurs at time point 80 and the control chart signals an alarm at the
99% confidence level (UCL=16.8) at time point 91.



Now ... diagnostics.
Which components shifted?

* There are 2° = 64 possible models
M;: No change
M, : Component 1 mean changes

M5 : Component 2 mean changes

Mg, : All component means change



Now ... diagnostics.
Which components shifted?

* There are 2° = 64 possible models
M;: No change
M, : Component 1 mean changes
M5 : Component 2 mean changes

M,,: Components 5 and 6 mean changes < TRUE MODEL

Mg, : All component means change



Posterior Probability for Change Point T

Histogram of Posterior Probabilities
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Posterior Probability for Change Point T

Histogram of Posterior Probabilities
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Joint
Posterior of
Model and
Change
Point

(with jitter)
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Estimate of Means after Change

Component Post-change mean 95% credible True value
estimate interval
0.71 (0.65,0.91) 0.75
1.96 (1.73,2.10) 2.00
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Reversible Jump Markov Chain Monte Carlo
(RIMCMC)

e Often used for model selection

* Used when parameter space for models has varying dimension
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Overview of MCMC (Metropolis-Hastings)

* X has pdf f(x|0), 0 has prior p(0)
* To simulate from the posterior p(8|x)
1. Start with 80, Setk =1

2. Simulate a proposal 8* from proposal distribution g()

3. Accept the move to proposal with probability

o 9(89)p(x16*)
a = min (1;g(9(k—1))p(x|9(k_1)))

4. 0%F) = @* w/prob a, and 8F) = 6= w/prob 1 — «
5. Repeat Steps 2-4 creating a sequence 89,91, ()




Overview of MCMC (Metropolis-Hastings)

* X has pdf f(x|@), 0 has prior p(0) THEOREM

. . The steady state distribution of the
* To simulate from the posterior p(8|x) Y

sequence 8(®, 01,03, . is the
1. Start with 9(0) Setk = 1 posterior distribution p(0|x).

2. Simulate a proposal 8* from proposal distribution g()

3. Accept the move to proposal with probability

o g(6*)p(x|6)
a = min (1)g(9(k—1))p(x|9(k_1)))

4. 0%F) = @* w/prob a, and 8F) = 6= w/prob 1 — «
Repeat Steps 2-4 creating a sequence 8%, 91, 9(2)
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Example of MCMC in 1-dim Change Point Problem

XllXZI ""XT ~ N(O,l)

Koyt Xog20 o AN ~ N(.u' 1) o - °L e
:.g O © o o o o o o OO OC' o]
Simulated datawitht=40° * 7 A
and u =1 R
Priors: T~DU(1,N) | | | | |
0 10 20 30 40

u~N (0, large var.)

Time
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Change Point

Mean After Change
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Dimensions Vary in Multivariate Case

* Suppose p = 2. IC mean uy, = [0,0]". IC covariance X = 1I.
* Possible Models
1. No change. Parameters: none

2. Only component 1 shifts. New meanis i; = [y, 0]
Parameters: 75, >4

3. Only component 2 shifts. New mean is u; = [0, 3]’
Parameters: 73, U3y

4. Both components shift. New meanis p; = [Usq, Hao]
Parameters: T4, Ua1, Uar



Dimensions Vary in Multivariate Case

* Suppose p = 2. IC mean uy, = [0,0]". IC covariance X = 1I.
* Possible Models
1. No change. Parameters: none dim=0

2. Only component 1 shifts. New meanis i; = [y, 0]
Parameters: 7,, Uy dim =2

3. Only component 2 shifts. New mean is u; = [0, 3]’

Parameters: 73, U3, dim =2

!

4. Both components shift. New meanis w; = [Uaq, sz ]
Parameters: T4, Ua1, Uar

dim=3



Dimensions of Parameter Space Vary

* The number of unknown parameters varies, depending on the model.

* “The number of things you don’t know is one of the things you don’t
know.” (Hastie, 1995)

* Green (1995) suggested method for transdimensional parameter
space models, and called it Reversible Jump Markov chain Monte
Carlo (RIMCMC).



Overview of Reversible Jump MCMC

* Consider models M,k = 1,2, ..., L.
* Model M}, has parameter @,,.

* The model specific posterior distribution is

po(Ok|My) L(D|6y, My)
pi (D|My)

T (O |D, My, ) =



Treat the model as an additional parameter.

* Treat the model M, as an additional parameter.
* 5, denotes parameter space for My,
* S = U£=1{Mk} X Sk

* Goal: Sample from S in an MCMC fashion to produce a chain that
converges to the posterior distribution

T(My, Oy |D) < po(My)po(Ox|My)L(D|My,0))



Overview of RIMCMC

* Propose move from model M;, with parameter x to model M;,, with
parameter x’

* Chain must be aperiodic and irreducible, and the detailed balance equation
must be satisfied:

a(x',u")
d(x,u)

()] (MM ) gWax,x") = w(x")j(My, M) g' (u)alx’, x)

u is a “padding” variable that accounts for the difference in dimension between
proposed models.



Acceptance Probability Is

C((X,X,) — min (1 T[(x’)j(Mk’le)g’(u’) |] |)

" (x)j(My M) g(w)

Dimension Matching

n;, = dimension of x 1, = dimension of u
n, = dimension of x’ 1, = dimension of u'’

ng +1r, =ng, +r,



RIMCMC Algorithm (Sketch)

1. Choose initial conditions (state) x5 = (Mko’”'ko’rko)

2. Within-model MH update of (l"ko'Tko)

3. Propose jump to model My, with PMF j(M,,'|M,)

4. If jumping to a model with more parameters, simulate u

5. Accept move to x|, = (Mko,uko,rko) with probability a(x, x})
6. Repeat steps 2 — 5 until MC convergence. Then run additional

simulations to explore posterior.



Possible implementation of RIMCMC

* Within-model MH (standard stuff)
e T ~ DU(centered at current 1)

* Model DU on all models that add one component or remove one

component.
Example: p = 4,M = {1,4}:
Possible proposed models: {1,2,4}, {1,3,4}, {1}, {4}



Smaller model to larger model ...

* Suppose we are in state M = {1} and we propose to move to model {1,4}.

Current state (within model 2, {1}) 0, = [,u%}rﬂ,r]

l

maps to (within model 8, {1,4}) 0, = [,ué}rﬂ,,uglﬁl,r]



Smaller model to larger model ...

* Suppose we are in state M = {1} and we propose to move to model {1,4}.

Current state (within model 2, {1}) 0, = [M%JH,T] @

maps to (within model 8, {1,4}) 0, = [,ué,ﬁl,,ug,ﬁl,r] @
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Smaller model to larger model ...

* Suppose we are in state M = {1} and we propose to move to model {1,4}.

u~N (last visit, 6;2)
$

Current state (within model 2, {1}) 0, = [,u%,rﬂ,u, T] @

maps to (within model 8, {1,4}) 0, = [,uélﬁl,,uglﬁl,r] @
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Larger model to smaller model ...

* Suppose we are in state M = {1,4} and we propose to move to model {1}.

Current state (within model 8, {1,4}) Or = |pd co1 e r41, T

maps to (within model 2, {1}) 0,, = [,u%’rﬂ,u, T]



model number

20 30 40 50 60

10

Model states

4000 6000 8000

10000




,64)

40

Model Number (1, 2

60

50

30

20

10

h-

L e

¢ JEAERT R W SR
3
PP

A £

"X3: P B KT T

e

76

77 78

Change Point

81

82

—
=

—

Shifted

Components
in Model
(%)

3, 5, 6 (9%)
2,5,6 (4%)

1, 5,6 (5%)

9, 6 (45%)

— 6 (17%)

38



AssuU

Model

Possible

mptions

XllXZI ,XTNN(HT, Z)
X1'+1» X1'+2» »XNNN(MT+1I Z)

1. known: u,, X
unknown: T, ;i1
(unrealistic, but easy to explain)

2. known: X
unknown: T, t;, Ui
(stepping stone)

3. known: nothing
unknown: T, U;, i1, 2
(realistic, but messy)



summary

* Motivated by multivariate SPC

 Single model to address
When did the change occur?
Which components changed?
What are the new means?

e Extensions to multiple change points by
(even messier) MCMC
Binary Segmentation
But ... SPCis often looking only for single change
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