A Bayesian Approach to Diagnostics for Multivariate Control Charts

> Fall Technical Conference Philadelphia, PA October 2017

> > Steven E. Rigdon Department of Biostatistics Saint Louis University

Robert Steward National Geospatial-Intelligence Agency Saint Louis, MO

Rong Pan School of Computing, Informatics and Decision Systems Engineering Arizona State University

Outline

- Motivating example
- MCMC Overview
- Reversible Jump MCMC Overview
- RJMCMC for Multivariate Change Pont Problem

Multivariate Process Control

- Problem motivated by statistical process control (SPC)
- Multiple (*p*) quality characteristics are measured on each item
- Goal: Simultaneously monitor all measured quality characteristics.
- Use a multivariate control chart (e.g. Hotelling's T^2 chart, or multivariate exponentially weighted moving average, or ...)

Diagnostics for Multivariate Control Chart

Model: $X_1, X_2, \dots, X_{\tau} \sim N(\boldsymbol{\mu}_{\tau}, \boldsymbol{\Sigma}), \quad X_{\tau+1}, X_{\tau+2}, \dots, X_N \sim N(\boldsymbol{\mu}_{\tau+1}, \boldsymbol{\Sigma})$

If the multivariate chart signals a change (point above upper control limit on control chart), then the questions arise

- 1. When did the change occur?
- 2. Which among the p components changed?
- 3. For those components that shifted, what are the new values for the mean?

Example (Simulated) to Illustrate the Problem

• *p* = 6

- Mean vector before the shift: $\mu_{\tau} = (0,0,0,0,0,0)$.
- Covariance matrix: 1's on diagonal, 0.3's on off-diagonal
- First 79 data points in control.
- At time 80, process mean shifts to $\mu_{\tau+1} = (0,0,0,0,0.75,2.00)$.
- Monitor process using Hotelling T^2 .

Time

Figure : A T^2 control chart applied to simulated data. A change-point to the mean vector occurs at time point 80 and the control chart signals an alarm at the 99% confidence level (UCL=16.8) at time point 91.

Time

Figure : A T^2 control chart applied to simulated data. A change-point to the mean vector occurs at time point 80 and the control chart signals an alarm at the 99% confidence level (UCL=16.8) at time point 91.

Now ... diagnostics. Which components shifted?

- There are $2^6 = 64$ possible models
 - M_1 : No change
 - M_2 : Component 1 mean changes
 - M_3 : Component 2 mean changes

• • • • • • • • • • • • • •

 M_{22} : Components 5 and 6 mean changes

• • • • • • • • • • • • •

 M_{64} : All component means change

Now ... diagnostics. Which components shifted?

- There are $2^6 = 64$ possible models
 - M_1 : No change
 - M_2 : Component 1 mean changes
 - M_3 : Component 2 mean changes

• • • • • • • • • • • • • •

 M_{22} : Components 5 and 6 mean changes \leftarrow TRUE MODEL

• • • • • • • • • • • • •

 M_{64} : All component means change

Posterior Probability for Change Point au

Histogram of Posterior Probabilities

Posterior Probability for Change Point au

Histogram of Posterior Probabilities

Change-point location

Posterior Probability for change-point location of Model 22

80

100

Joint Posterior of Model and Change Point (with jitter)

Estimate of Means after Change

Component	Post-change mean estimate	95% credible interval	True value
5	0.71	(0.65,0.91)	0.75
6	1.96	(1.73,2.10)	2.00

Reversible Jump Markov Chain Monte Carlo (RJMCMC)

- Often used for model selection
- Used when parameter space for models has varying dimension

Overview of MCMC (Metropolis-Hastings)

- X has pdf $f(x|\theta)$, θ has prior $p(\theta)$
- To simulate from the posterior $p(\theta|x)$
 - 1. Start with $\theta^{(0)}$. Set k = 1
 - 2. Simulate a proposal θ^* from proposal distribution g()
 - 3. Accept the move to proposal with probability

$$\alpha = \min\left(1, \frac{g(\theta^*)p(\boldsymbol{x}|\theta^*)}{g(\theta^{(k-1)})p(\boldsymbol{x}|\theta^{(k-1)})}\right)$$

4. $\boldsymbol{\theta}^{(k)} = \boldsymbol{\theta}^*$ w/prob α , and $\boldsymbol{\theta}^{(k)} = \boldsymbol{\theta}^{(k-1)}$ w/prob $1 - \alpha$

5. Repeat Steps 2-4 creating a sequence $\theta^{(0)}$, $\theta^{(1)}$, $\theta^{(2)}$, ...

Overview of MCMC (Metropolis-Hastings)

- X has pdf $f(x|\theta)$, θ has prior $p(\theta)$
- To simulate from the posterior $p(\theta|x)$
 - 1. Start with $\theta^{(0)}$. Set k = 1

THEOREM

The steady state distribution of the sequence $\theta^{(0)}, \theta^{(1)}, \theta^{(2)}, \dots$ is the posterior distribution $p(\theta|x)$.

- 2. Simulate a proposal θ^* from proposal distribution g()
- 3. Accept the move to proposal with probability

$$\alpha = \min\left(1, \frac{g(\boldsymbol{\theta}^*)p(\boldsymbol{x}|\boldsymbol{\theta}^*)}{g(\boldsymbol{\theta}^{(k-1)})p(\boldsymbol{x}|\boldsymbol{\theta}^{(k-1)})}\right)$$

4. $\boldsymbol{\theta}^{(k)} = \boldsymbol{\theta}^*$ w/prob α , and $\boldsymbol{\theta}^{(k)} = \boldsymbol{\theta}^{(k-1)}$ w/prob $1 - \alpha$

5. Repeat Steps 2-4 creating a sequence $\theta^{(0)}$, $\theta^{(1)}$, $\theta^{(2)}$, ...

Example of MCMC in 1-dim Change Point Problem

Dimensions Vary in Multivariate Case

- Suppose p = 2. IC mean $\mu_0 = [0,0]'$. IC covariance $\Sigma = I$.
- Possible Models
 - 1. No change. Parameters: none
 - 2. Only component 1 shifts. New mean is $\mu_1 = [\mu_{21}, 0]'$ Parameters: τ_2, μ_{21}
 - 3. Only component 2 shifts. New mean is $\mu_1 = [0, \mu_{32}]'$ Parameters: τ_3, μ_{32}
 - 4. Both components shift. New mean is $\mu_1 = [\mu_{41}, \mu_{42}]'$ Parameters: τ_4 , μ_{41} , μ_{42}

Dimensions Vary in Multivariate Case

- Suppose p = 2. IC mean $\mu_0 = [0,0]'$. IC covariance $\Sigma = I$.
- Possible Models
 - 1. No change. Parameters: none
 - 2. Only component 1 shifts. New mean is $\mu_1 = [\mu_{21}, 0]'$ Parameters: τ_2, μ_{21}
 - 3. Only component 2 shifts. New mean is $\mu_1 = [0, \mu_{32}]'$ Parameters: τ_3, μ_{32}
 - 4. Both components shift. New mean is $\mu_1 = [\mu_{41}, \mu_{42}]'$ Parameters: τ_4 , μ_{41} , μ_{42}

 $\dim = 0$

 $\dim = 2$

dim = 2

Dimensions of Parameter Space Vary

- The number of unknown parameters varies, depending on the model.
- "The number of things you don't know is one of the things you don't know." (Hastie, 1995)
- Green (1995) suggested method for *transdimensional* parameter space models, and called it Reversible Jump Markov chain Monte Carlo (RJMCMC).

Overview of Reversible Jump MCMC

- Consider models M_k , k = 1, 2, ..., L.
- Model M_k has parameter $\boldsymbol{\theta}_k$.
- The model specific posterior distribution is

$$\pi_k(\boldsymbol{\theta}_k | \boldsymbol{D}, \boldsymbol{M}_k) = \frac{p_0(\boldsymbol{\theta}_k | \boldsymbol{M}_k) L(\boldsymbol{D} | \boldsymbol{\theta}_k, \boldsymbol{M}_k)}{p_k(\boldsymbol{D} | \boldsymbol{M}_k)}$$

Treat the model as an additional parameter.

- Treat the model M_k as an additional parameter.
- S_k denotes parameter space for M_k
- $S = \bigcup_{k=1}^{L} \{M_k\} \times S_k$
- Goal: Sample from *S* in an MCMC fashion to produce a chain that converges to the posterior distribution $\pi(M_k, \boldsymbol{\theta}_k | \boldsymbol{D}) \propto p_0(M_k) p_0(\boldsymbol{\theta}_k | M_k) L(\boldsymbol{D} | M_k, \boldsymbol{\theta}_k)$

Overview of RJMCMC

- Propose move from model M_k with parameter x to model M_k , with parameter x'
- Chain must be aperiodic and irreducible, and the detailed balance equation must be satisfied:

$$\pi(x)j(M_k|M_{k'})g(u)\alpha(x,x') = \pi(x')j(M_{k'}|M_k)g'(u')\alpha(x',x)\left|\frac{\partial(x',u')}{\partial(x,u)}\right|$$

u is a "padding" variable that accounts for the difference in dimension between proposed models.

Acceptance Probability Is

$$\alpha(x, x') = \min\left(1, \frac{\pi(x')j(M_{k'}|M_k)g'(u')}{\pi(x)j(M_k|M_{k'})g(u)}|J|\right)$$

Dimension Matching

$$n_k = \text{dimension of } x$$
 $r_k = \text{dimension of } u$ $n'_k = \text{dimension of } x'$ $r'_k = \text{dimension of } u'$

$$n_k + r_k = n'_k + r'_k$$

RJMCMC Algorithm (Sketch)

- 1. Choose initial conditions (state) $x_0 = (M_{k_0}, \mu_{k_0}, \tau_{k_0})$
- 2. Within-model MH update of $(\boldsymbol{\mu}_{k_0}, \tau_{k_0})$
- 3. Propose jump to model $M_{k'}$ with PMF $j(M_{k'}|M_k)$
- 4. If jumping to a model with more parameters, simulate u
- 5. Accept move to $x'_0 = (M_{k_0}, \mu_{k_0}, \tau_{k_0})$ with probability $\alpha(x_0, x'_0)$
- Repeat steps 2 5 until MC convergence. Then run additional simulations to explore posterior.

Possible implementation of RJMCMC

- Within-model MH (standard stuff)
- $\tau \sim \text{DU}(\text{centered at current } \tau)$
- Model DU on all models that add one component or remove one component.

Example:
$$p = 4, M = \{1, 4\}$$
:

Possible proposed models: {1,2,4}, {1,3,4}, {1}, {4}

Smaller model to larger model ...

• Suppose we are in state $M = \{1\}$ and we propose to move to model $\{1,4\}$.

Current state (within model 2, {1})
$$\tilde{\theta}_k = \begin{bmatrix} \mu_{2,\tau+1}^1, \tau \end{bmatrix}$$

maps to (within model 8, {1,4}) $\tilde{\theta}_{k\prime} = \begin{bmatrix} \mu_{8,\tau+1}^1, \mu_{8,\tau+1}^4, \tau \end{bmatrix}$

Smaller model to larger model ...

• Suppose we are in state $M = \{1\}$ and we propose to move to model $\{1,4\}$.

Current state (within model 2, {1})
$$\tilde{\theta}_k = \left[\mu_{2,\tau+1}^1, \tau\right]$$
2-dimmaps to (within model 8, {1,4}) $\tilde{\theta}_{k\prime} = \left[\mu_{8,\tau+1}^1, \mu_{8,\tau+1}^4, \tau\right]$ 3-dim

Smaller model to larger model ...

• Suppose we are in state $M = \{1\}$ and we propose to move to model $\{1,4\}$. $u \sim N(\text{last visit}, \sigma_u^2)$ Current state (within model 2, $\{1\}$) $\tilde{\theta}_k = \begin{bmatrix} \mu_{2,\tau+1}^1, u, \tau \end{bmatrix}$ $\tilde{\theta}_{k'} = \begin{bmatrix} \mu_{8,\tau+1}^1, \mu_{8,\tau+1}^4, \tau \end{bmatrix}$ $\tilde{\theta}_{k'} = \begin{bmatrix} \mu_{8,\tau+1}^1, \mu_{8,\tau+1}^4, \tau \end{bmatrix}$ $\tilde{\theta}_{k'}$

Larger model to smaller model ...

• Suppose we are in state $M = \{1,4\}$ and we propose to move to model $\{1\}$.

Current state (within model 8, {1,4}) $\tilde{\theta}_k = \left[\mu_{8,\tau+1}^1, \mu_{8,\tau+1}^4, \tau\right]$

maps to (within model 2, {1}) $\tilde{\theta}_{k\prime} = \left[\mu_{2,\tau+1}^1, u, \tau\right]$

Model states

model number

$$\begin{array}{l} X_1, X_2, \dots, X_{\tau} \sim N(\boldsymbol{\mu}_{\tau}, \boldsymbol{\Sigma}) \\ \textbf{Node} \\ X_{\tau+1}, X_{\tau+2}, \dots, X_N \sim N(\boldsymbol{\mu}_{\tau+1}, \boldsymbol{\Sigma}) \end{array}$$

Possible Assumptions

1. known: μ_{τ} , Σ unknown: τ , $\mu_{\tau+1}$ (unrealistic, but easy to explain)

2. known: Σ unknown: τ , μ_{τ} , $\mu_{\tau+1}$ (stepping stone)

3. known: nothing unknown: τ , μ_{τ} , $\mu_{\tau+1}$, Σ (realistic, but messy)

Summary

- Motivated by multivariate SPC
- Single model to address
 When did the change occur?
 Which components changed?
 What are the new means?
- Extensions to multiple change points by (even messier) MCMC
 Binary Segmentation
 - But ... SPC is often looking only for single change