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Introduction – Overview 

Aero-engine 

Manufacturing

Semiconductor 

Manufacturing

Printed 

Electronics

• Sensor data are being collected in various manufacturing processes.

• These data provide great opportunity for system scale-up, process
quality and efficiency improvements, etc.

• However, there is a lack of methods to systematically analyze the
manufacturing sensor data, and provide interpretable features.
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Introduction – Data Types
The commonly encountered data types include: scalar variables,
functional variables, images, simulation data, etc.

Holistically analyzing these data for the quality and efficiency
improvement is critical.

Gray Color: Machine Setting Variables

Blue Color: Functional Process Variables

Red Color: Quality Variables
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Functional Variable Selection

Conforming

Polycrystalline

• Objective: To identify significant functional variables and features through
hierarchical variable selection in manufacturing modeling

• Approach: A Hierarchical Non-Negative Garrote (HNNG) based logistic
regression model is proposed to extract important features from functional
process variables.

http://www.youtube.com/watch?v=AMgQ1-HdElM

Sun, H., Deng, X., Wang, K., and Jin, R. (2016). Logistic Regression for Crystal Growth Process Modeling through 

Hierarchical Nonnegative Garrote based Variable Selection. IIE Transactions, 48(8), 787-796.
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• Objective: To extract interpretable knowledge and features of
manufacturing functional (time series) data for human operators
to perceive, remember and understand

• Motivation: The current fault diagnosis and machine maintenance
decisions are hard to be made and usually delayed.

Pull Speed

Pressure

Heater Power

Temperature

Motivation and Objective
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Challenges and Approach

• Challenges

• Extract interpretable patterns from massive time series data

• Approach: a Supervised Subgraph Augmented Non-negative
Matrix Factorization (Super-SANMF) is proposed for
interpretable feature selection.

• High dimensionality
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State-of-the-Art
• Explainable data analytics

• Automated User-centered Reasoning and Acquisition (AURA) helped experts
answer scientific questions (Gunning et al., 2012).

• Unified Service Intelligence (USI) focused on “generating actionable insight
from large bodies of data”, and was tested by 1,500 users from Siemens
Energy (Waltinger et al., 2013).

• DARPA launched a program to develop explainable AI (XAI) in 2016.

• Time series data representation

• Summary statistics (mean, standard deviation, etc.); Mathematical
transformations (basis expansion, matrix factorization)

• Graphical representation (piecewise approximation, temporal abstraction)

• Connect naturally to human language, with good interpretability, flexibility
and interactivity (Daw et al., 2003)

• Be applied in geophysics, biology, chemistry and communication for
anomaly detection, visualization, database query, clustering, and
classification (Lin et al., 2007; Montani et al., 2013; Luo et al., 2016; Liu et
al., 2016)

In this work, we represent the time series with graphs considering
human perception and human working memory capacity.



‘-

11

• Introduction

• State-of-the-Art

• Proposed Method

• Case Study

• Summary and Future Work

• Other Works

Outline



‘-

12

Proposed Framework

Preprocessed 
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Assumptions:
• The time series can be presented by the generated graphs.
• The frequent subgraphs are meaningful for defect modeling and diagnosis.
• The class label information can facilitate the matrix factorization.

Graphs
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Graph Generation

• Discretization in Time Axis:
• Human working memory holds 7 unrelated items on average (Miller, 1956).

• The memory span increases to 15 on average by grouping items (Baddeley,
2003), and tens of items after regular training (Klingberg, 2010).

• Discretization in Measurement Axis: parametric distribution based
approach (Lin et al., 2007).

• Graph generation:

• Nodes: magnitudes of intervals (i.e., discretized levels)

• Edges: changing patterns (e.g., same, up, down) between two nodes

• Tightness of lower bound and entropy ratio are used to quantify the
information loss.
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Frequent Subgraph Mining (FSM)

• For two graphs �� ��, ��, ��� , �	� , 
� and �� ��, ��, ��� , �	� , 
� , ��
is a subgraph of �� if it satisfies the following conditions (Jiang et
al., 2013):

�� ⊆ �� and ∀� ∈ ��, 
� � = 
� �

�� ⊆ �� and ∀ �, � ∈ ��, 
� �, � = 
� �, �

• We adopt MoFa/Moss for FSM (Borgelt and Berthold, 2002).

� �, �, �� , �	 , 


Node Set Edge Set 

Node Label Set Edge Label Set 

Defines the mapping 
� → �� and � → �	
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Super-SANMF

� ≈ �� = ��, � ∈ ��
�×�, � ∈ ��

�×�

Number of graphs (samples)

Number of subgraphs 

Subgraphs count matrix 

 = !�, … , !�
# ∈ ��

�×$

Number of classes Class label matrix 

!% = &�,% , … , &$,%
#
, if the 'th sample 

belongs to the (th class, &$,% = 1 and 

&*,% = 0, ∀, ≠ (

Each row represents a 

subgraph group

Each column represents the weight of the 

corresponding subgraph group for reconstructing �

(Luo et al., 2016)

• To address the high dimension issue (large .):

 ≈  � = �/, � ∈ ��
�×�, / ∈ ��

�×$

• � and  share the same matrix � during the matrix factorization.

� = 0�, … , 0�
# ∈ ��

�×�
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Super-SANMF Formulation

• Super-SANMF is formulated as (Sun and Fevotte, 2014):

1'�	� = 3 �|�� + 63  | � ,

7. 9. �� = ��,  � = �/,

� = ��, / = /�, � = ��,

�� ≽ 0, /� ≽ 0, �� ≽ 0,

where 3 �|�� = ∑∑ (�%,*=>?
@A,B

@�A,B
− �%,* + ��%,*)%,* is the generalized

Kullback–Leibler (KL) divergence (Sun and Fevotte, 2014);

6 is a weight factor taken as the number of columns in � over
the number of columns in  , to adjust for the column number
imbalance.

Matrix factorization 

Non-negativity 
constraints

Element-wise greater 
than or equal to
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ADMM for Super-SANMF
• An Alternating Direction Method of Multipliers (ADMM) for NMF 

was illustrated to have faster convergence than the widely used 
multiplicative updates algorithm (Sun and Fevotte, 2014). 

• An ADMM for Super-SANMF is devised in this work.
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Data Summary

• 45 ingots (samples) are obtained, and
randomly partitioned into a training data set
(27 samples) and a testing data set (18
samples).

• 17 normal and 10 defective samples in the
training data set, and 11 normal and 7
defective samples in the testing data set.

• Four functional variables: heater power, set
point (SP) temperature value, pull speed and
furnace pressure are studied, which are
sampled 1 point per minute (Sun et al., 2016).
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• Preprocessed measurements (“Original”), or

• Spline expansion coefficients (“Spline”, cubic spline is used), or

• Wavelet expansion coefficients (“Wavelet”, sym4 is used)

• A two-fold CV is used for tuning parameter selection. Only two
folds are used because the number of samples is limited.

• The discretization in time axis interval number =	: 7, 15, 20, 30, or 60.

• The discretization in measurement axis (	: 3, 6, or 9.

• The matrix factorization rank E: 5, 10, 15, or 20.

• Lasso and HNNG are used in benchmark functional logistic
regression (Tibshirani, 1996; Sun et al., 2016), with predictors:

• Super-SANMF and SANMF are applied with:

Model Evaluation for the Case Study
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Model Prediction Performance
The proposed framework can yield comparable prediction performance
with benchmark models, which indicates effective information
preservation after the graphical representation.

Model Type Input Type Overall Type I Type II

Lasso

Original 0.17 0.09 0.29

Spline (1 2⁄ ) 0.39 0.36 0.43

Spline (1 15⁄ ) 0.28 0.27 0.29

Wavelet 0.17 0.18 0.14

HNNG

Original 0.22 0.09 0.43

Spline (1 2⁄ ) 0.28 0.18 0.43

Spline (1 15⁄ ) 0.17 0.18 0.14

Wavelet 0.17 0.09 0.29

Proposed
SANMF 0.33 0.36 0.29

Super-SANMF 0.17 0.09 0.29

A Summary of Benchmark and Proposed Models Testing Errors
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Subgraph Groups Selected in Super-
SANMF
The top 2 subgraph groups selected in Super-SANMF is shown below:

• The first subgraph group captures that patterns with heater power constantly stay
at high level or SP value stay at low level are important.

• The second subgraph group captures that patterns with pull speed or furnace
pressure stay at middle level are important.
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A Visualization of Representative Significant 
Features

An illustration of testing (a) time series data, (b) non-zero segments of time series data

reconstructed from significant wavelet coefficients and, (c) segments of time series data

and corresponding significant subgraphs for heater power.

(a) (b) (c)

The occurrence counts of the subgraphs selected in (c) are used in a
hypothesis test (F-test) to validate if the pattern is indeed an indicator
for defective ingots. The test statistics is 18.89, with p-value as 5×10-4.

The coefficients of the selected subgraph groups in Super-SANMF are

mapped back to the subgraphs.

Blue: normal

Red: defective

s: same
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Summary and Future Work

• Summary
• It is important to extract interpretable features from time series

to help human understand the data analytics.
• A framework for interpretable time series representation and

modeling is proposed:
• Consider the human descriptions of time series
• Propose Super-SANMF and its ADMM algorithm for

supervised dimension reduction
• Have comparable prediction performance with benchmark

models with complex features, but the features learned are
easier to capture by operators

• Future Work
• Other variable types, such as continuous or count response,

text data, will be explored in the proposed framework.
• The proposed framework will be extended for each operator to

facilitate the personalized understanding and decision making.
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• Objective: to model the relationships among offline setting variables, in situ

process variables and quality responses in manufacturing processes.

• Approach: a functional graphical model with penalization is proposed for
systems with both functional and scalar variables.

Sun, H., Huang, S., and Jin, R. (2017) Functional Graphical Models for Manufacturing Process Modeling. 

IEEE Transactions on Automation Science and Engineering, PP(99), 1-10.

Offline Setting Variables

In situ Process Variables

Coating Quality Variables

Functional Graphical Models for 
Manufacturing Process Modeling
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Quantitative and Qualitative (QQ) Evaluation of 
Printed Electronics based on Microscopic Images

• Objective: to predict overspray (qualitative response) and resistance
(quantitative response) jointly based on microscopic images

• Approach: augmented QQ models are investigated to predict overspray and
resistance jointly based on microscopic images.

Sun, H., Wang, K., Li, Y., Zhang, C., and Jin, R. (2017) Quality Modeling of Printed Electronics in Aerosol Jet

Printing Based on Microscopic Images. ASME Transactions on Manufacturing Science and Engineering,

139(7), 071012.

Microscopic 
Images 

Image Features 

Line Resistance: 22.2 Ω

Optomec Aerosol Jet ® System Nozzle and Substrate
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Ensemble Modelling of In situ Feature Variables for Printed 
Electronics with In situ Process Control Potential

• Objective: to enable the significant in situ feature variables for quality

variables be controllable by offline setting variables

• Approach: ensemble models and corresponding constraints for the
hierarchical variable relationship are proposed for the potential in situ process
control.

Li, Y., Mohan, K., Sun, H., and Jin, R. (2017) Ensemble Modelling of in situ Features for Printed

Electronics Manufacturing with in situ Process Control Potential. IEEE Robotics and Automation

Letters, 2(4), 1864-1870.

Optomec Aerosol Jet ® System Nozzle and Substrate Printed Sliver Lines

In situ Feature 

Variables 

Offline Setting 

Variables 

Quality Variables

Feedback Control?
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Multitask Learning for Multiple Connected 
Microbial Fuel Cells

Sun, H.*, Luo, S.*, Jin, R., and He, Z. (2015) Multitask Lasso Model for Investigating Multimodule Design

Factors, Operational Factors, and Covariates in Tubular Microbial Fuel Cells. ACS Sustainable Chemistry &

Engineering, 3(12), 3231-3238.

• Objective: to scale up the limited capacity lab-scale microbial fuel cells

• Approach: multiple microbial fuel cells are serially connected, and modeled
with multitask learning.

Wastewater

Pure Water 
+ Energy

Obs. Data

Operation 
Guidance
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Ensemble Engineering and Statistical Modeling for Parameter 
Calibration towards Optimal Design of Microbial Fuel Cells

Sun, H.*, Luo, S.*, Jin, R., and He, Z. (2017) Ensemble Engineering and Statistical Modeling for Parameter 

Calibration towards Optimal Design of Microbial Fuel Cells. Journal of Power Sources, 356, 288-298.

• Objective: to combine observation from existing system and engineering
models for design and operation of different microbial fuel cell generations

• Approach: a multivariate Gaussian process model is used during modeling
for the optimal design in new systems.
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Thank you! 
Questions?
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ADMM for Super-SANMF
Non-negative SVD (Boutsidis and Gallopoulos, 2008)

Inputs: �,  ,
Step 1: Initialize	�, /, �, ��, /�, ��, I@� , IJ� , IK, IL, IM,

Step 2: Repeat

� ← �#� + O P�(�#�� + �� +
�

Q
(�#I@� − IK)),

/ ← �#� + O P�(�# � + /� +
�

Q
(�#IJ� − IL)),

�# ← (��# + //# + O)P�(���# + / �# + ��
# +

�

Q
(�I@�

# + /IJ�
# − IM

#)),

�� ←
QMKPRSTP� � QMKPRSTP�

�
�UQ@

�Q
,	element-wise,

 � ←
QMLPRVTPW � QMLPRVTPW

�
�UQWJ

�Q
, element-wise,

�� ← 1XY � +
�

Q
IK, 0 , /� ← 1XY / +

�

Q
IL , 0 , �� ← 1XY � +

�

Q
IM, 0 ,

I@� ← I@� + Z �� − �� , IJ� ← IJ� + Z  � − �/ ,

IK ← IK + Z � − �� , IL ← IL + Z / − /� , IM ← IM + Z � − �� ,

Until convergence.
Step 3: Return ��, /�, ��.

Zero matrices of 

Lagrangian multipliers

Columns of �� are used as predictors in an =1

penalized logistic regression (Luo et al., 2016). 
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Preprocessing

• A normal reference curve for each process variable is
generated based on the average of normal samples in the
training data set.

• The time series data are subtracted by the reference curves,
resulting in the difference (from normal reference) curves.

• Based on engineering knowledge, there is typically a 2-hour
to 3-hour delay in the defect detection.

• A 3-hour window (i.e., 180 measurement points) of the difference curve
prior to defect detection is extracted in defective samples.

• A 3-hour window of the difference curves prior to the mean of defect
detection time is extracted in normal samples for data alignment.
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Significant Features
• The selected settings in SANMF and Super-SANMF have length,

level and rank as 15, 3, 20, and 15, 3, 15, respectively.

• Based on the relative weight of each subgraph in a subgraph group (a
row of � in (1)), the coefficients of the selected subgraph groups in
Super-SANMF are mapped back to the subgraphs.

Wavelet Coefficients Subgraphs

1 Power: C (3) Power: (3,3,3)

2 Power: C (2) Power: (3,3,3,3)

3 Power: C (1) Power: (3,3,3,3,3,3,3)

4 Pull: C (14) Pull: (2,2,2)

5 Power: C (10) Pull: (2,2)

6 Pull: C (15) Pull: (2,2,2,2)

7 Pull: D1 (8) Pressure: (2,2,2,2)

8 Pull: C (17) Power: (3,3,3,3,3,3,3,3,3)

9 Pressure: D2 (26) Pressure: (2,2,2,2,2)

10 Pressure: D2 (28) SP: (1,1)

Table 2. A Summary of Significant Wavelet Coefficients and Subgraphs (Top 10)

C represents 

coarse scale,  

Dx represents 

detailed scale x

Numbers represent 

the levels of the 

discretized values.
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Characterization of Information Loss
Smaller values indicate larger information loss. The two information
loss measures have similar values under the same setting.

Length Level Tightness of Lower Bound Entropy Ratio

7 3 0.1075 0.1108

15 3 0.1349 0.1515

20 3 0.1394 0.1627

30 3 0.1527 0.1830

60 3 0.1824 0.2182

7 6 0.2697 0.2425

15 6 0.3036 0.2970

20 6 0.3149 0.3136

30 6 0.3370 0.3386

60 6 0.3688 0.3766

7 9 0.3498 0.2992

15 9 0.3863 0.3827

20 9 0.3951 0.4075

30 9 0.4155 0.4428

60 9 0.4491 0.4900
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Logistic regression prediction plots with (a) Original, (b) Spline
(1 2⁄ ), (c) Spline (1 15⁄ ), and (d) Wavelet as predictors. Blue
circles: predicted probabilities, Red dots: actual responses.


