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e B.Eng.: Electronic Engineering, Tsinghua Univ.
e M.S.: Industrial Engineering, Univ. of Michigan.
e M.A.: Statistics, Univ. of Michigan.

e Ph.D.: Industrial Engineering, Georgia Tech.

e Research Interests

e Data fusion in smart manufacturing

e \Visualization of data with complex structures (manufacturing
processes/systems, motion tracking data, enterprise profile)



Data Fusion in Product Realization
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Industrial Internet for Smart Manufacturing
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Data Fusion in Smart Manufacturing
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e Research Objective: Process data to support effective decision making in
smart manufacturing (smart design, smart manufacturing operations, and

smart services).

e Key Areas: Data Fusion Modeling, Process Monitoring, Control, 3D Cloud
Data Analysis, Mfg. Visualization

e Key Industrial Applications: Additive Mfg. (Metal, Polymer, Electronics),
Aero-engine Mfg., Baby Care Mfg., Continuous Fiber Mfg., Machining, Steel
Mfg., Wafer Mfg.,etc.




Outline

* Ensemble Modeling for Data Fusion in Manufacturing Scale-up
Joint work with Dr. Xinwei Deng @ VT Statistics

e Other Research

* Summary



Quality Control in Manufacturing Scale-up
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e Objective: to model the quality variables in scale-up manufacturing
e Time consuming and difficult:
e Impact of noise factors (e.g., uncertainties from equipment)

e Multiple rounds of modeling and process optimization (trial-and-error,
or robust parameter design)

e Model consistency based on the two types of data

Jin and Deng (2014), IISE Transactions



Complimentary Features of Data Sets

* Design of Experiments (DOE) is usually performed

e toidentify important process variables,
e to control the noise factors, and
e to determine initial recipes.

e Validation production is usually carried out after DOE

e to obtain observational data, and
e to validate the initial manufacturing recipe.

e Modeling and optimization performance is usually affected by sample size,
data uncertainty, and range of predictors.

Data Type | Sample Size | Uncertainty | Range

Experimental Small Low Large | ~ Complimentary
i Features >

Data Fusion?

Observational Large High Small




Methods based Experimental Data

Robust Parameter Design (RPD) (Taguchi, 1962; Wu and Hamada, 2000; Montgomery,
2005)

RPD based feedforward/feedback control
(Joseph, 2003; Dasgupta and Wu, 2006)

e DOE-based APC (Jin and Ding, 2004; Zhong et al., 2010)

e Applications in discrete part mfg, nano material fabrications, etc. (Basumallick et al.,
2003; Dasgupta et al., 2008...)

e Limitations: expensive for a large number of runs



Methods based Observational Data

e Regression-based variation analysis (Fong and Lawless, 1998)

e Stream-of-Variation theory (shi, 2006; Apley and Shi, 1998; Jin and Shi, 1999; Ceglarek
and Shi, 1999; Huang et al., 2003; Zhou et al., 2003; Ding et al., 2005; Liu et al., 2010)

e (Causation based variation reduction (Li and Shi, 2007; Li et al., 2008)
e Regression tree based methods (Jin and Shi, 2012)

e Limitations: not applicable for unstable testing production
model consistency issue



Proposed Method

Experimental Data > Model 1
1 \4 Joint Model Estimation
Mfg. Processes Data Fusion > * Significant variables
 Weak heredity
Observational Data Model 2 v
T Constrained Likelihood
Estimation

* Data fusion of experimental and observational data
* Two models: Model 1 for DOE and Model 2 for the mfg. system
* Assumptions:

(i) Two types of data with the same predictors and responses
(ii) Static process in one model iteration

(iii) Significant variables identified from the DOE model = significant in the final
model
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Model Parameterization

* Denote the experimental (DOE) data as (=; oy ).,-_; =1,...,n1, and

observational (OBS) dataas (2", 4*).j=1,....,n2. Here

20 = (VY)Y and 2@ = (P, 2{?) contain the same p factors,
y*®) I = 1.2 is univariate response, and x = (11,...,0,, 0109, ..., Ty 17,)

Model 1 «— y = 2B 4 e~ N(0,67).

Model 2 «— @ = @' B8 + & 2 L N(0,03),

* Model parametrization through nonnegative garrote (Breiman,1995;
Yuan and Lin, 2007)

We re-parameterize the regression coefficients by
Iq : (ls
B = 03" By = 0 B,

where 3" and 3! are the least squared estimates, and ¢, > 0
¢ > 0 are the shrinkage coefficients, which can be estimated from

data.



Joint Variable Selection

» Bydefining @ = Bz ,where B = diag(3",.... 3. 815, ... 3% )

previous model can be converted as

2100 4 V(D L N0, 02),

Model 1 «—— ¢V
0% 1+ 2 (D N(0,02).

* Such parameterization provides us the flexibility to impose various
constraints for estimating parameters.

* Joint model estimation and variable selection by enforcing constraints

Model 2 <—— y(z)

» Significant variables from DOE

ol <o k=1, .p 0 <o@ vk £1.

 Weak heredity

O < max{y,6;} ‘ O < 0 + 6.
14



Constrained Likelihood Estimation

on . ‘2 Come (2 2 p(2)42

min {nl[loggf 1 ;;_:11; (-yﬁl} _ i; ) 9(1))‘} +ng[log o + ”12322; (ELE ) _ i:’; 922
s.t. sz; oY + kzp; 0 < M, — ;T\T'e; lcjon:ttrjm:\z parameter

o\ > 0,vk, 6% >0, Vk, —> Definition

o\ <6 k=1 p, -

QS) < Qﬁ(j) Tkl k=1, .. ’. _- Significance from DOE

o) < oM 46 Wk £k I=1,... . p

00 <02 1 0@ ki k=1, p ] Weak Heredity

This optimization is solved by an iterative algorithm.

The tuning parameter is selected using BIC. T



Simulation Study

Simulation Setup

Factors | Interaction | Heredity | Sigma Sample Range
Size

Exp. 1 5(4) 10(8) Weak | 2 (1/5/10) | 24 (1/3/5) [-1, 1]
(1, 0.5, 0.3)

Exp.2 | 10(7) 45(15) Strong | 2 (1/5/10) | 64 (1/3/5) [-1, 1]
(1, 0.5, 0.3)

Exp.3 | 10(7) 45(15) Weak |2 (1/5/10) | 64 (1/3/5) [-1, 1]
(1, 0.5, 0.3)

Example 3: vy = 1.60x1 +4.01x2 + 3.51x3 4+ 2.36x3 + 1.40x7
+ 1.93xg + 2.48x9 + 4.66x7x2 + 3.78x1.3
3.33x107 + 4.85x1xg + 2.87x1 X9

+ 2.34x1x4 +

hhhhh

+ 1.45xx3 4+ 3.400x4 + 3.34xx7 + 5.2000 X3
+ 1.89xx9 + 2.33x3x4 + 1.97x7x8 + 4.91x3x0

+ 2.44xgx10 + €.
We fit the model based on a training set, and predict on a test set (uniformly

over the input variable space).




Simulation Results- Example 3

The average of MSPE based on 50 simulation replicates
in Example 3 (weak heredity)

Rops/ Rpor =1 Rops/ Rpop = 0.5 Rops/ Rpor = 0.3
r!_':.,-"H',l J"I'fE'Fh(Jf." g-:- =1 %T =5 z—-l- = 10 z—l- =] E—T— =5 z—l- =%\ %—:‘- =1 %I- =5 z—-l- = 10
| BMpoE 11.96 11.99 10.58 11.95 11.82 11.49 10.62 11.40 12.49
(0.93) (0.61) (0.54) (D.60) {(0.70) (0.63) (0.53) (0.66) (0.73)
BMqops 19.54 66.92 142.64 72.10 31606 541.61
i1.02) (5.00) (11.88) (21.37) (39.24)
B My, 281 7.09 12.23
(0.09) (0.35) (0.79)
EM 3.50 6.24 8.36
(0.10) (0.25) (0.43)
3 BMpoe I1.37 10,83 12.99 12.42
[} 55 (). 58 ) (0,72
BMags 10,90 18.47 189.51
.58 1.38 18.98
BMcpp 5.25 8.33 5.97
(0.07) (0.23) i0.42) (0.21) (0.31) (0.17) (0.29) (0.05) (0.08)
EM 2.56 4.05 5.09 .65 4.27 4.85 4.69 4.52 4.82
i(0.06) (0.13) (0.09) (0.12) (0.06) (0.15) i(0.13) (0.05) (0.08)
5 BMpoe 12.69 11.25 13.06 12.59 10.67 11.55 11.63 11.98 11.73
(0.90) (0.68) (0.76) (0.57) (0.64) (0.63)
BMaps 3.48 .41 14.56 13.48 60.87 100,21
(0.07) (0.36) i(1.06) (1.13) (6.41) (12.34)
BMesn .62 4.98 8.97 3.97 5.09 6.85
(0.06) (0.16) (040 (0.28) (0.09) (0.11)
EM 2.02 4.16 5.99 3.39 4.44 493
(0.07) (0.07) (0.2 i0.06) (0.07) (0.08)




Simulation Results- Variable Selection

# of False Selection for Example 3,
average of 50 simulation replicates

Rops/ Rpor =1

Rogs/ Rpoe = 0.5

Rogs/ Rpog = 0.3

n:/ny Method Z=1 2=3 2 =10 2 =1 2=35 2= 2 =1 2=5 = =10
I BMpoe 22.68 23.00 20.32 22.84 22.64 22.22 21.24 20.40 23.04
B Mngps 26.90 20.76 27.86 27.26 28.88 26.90 27.28 27.12 27.18
BMepp 378 13.00 19.68 8.06 14.78 20.16 9.42 13.56 21.32
EM 11.24 13.76 16.08 13.76 14.58 14.76 14.68 15.84 14.96
3 BMoor 2156 ) WL pER I 70.72 73,24 31,60 7274 3.0 3330
B Myps 13.30 21.74 2218 17.62 2246 22.28 20,74 22.12 22.62
B Mcpp 4.76 15.42 21.08 6.08 16.08 20.24 8.20 17.34 20.98
EM 7.90 I 13.34' I 13.12 8.36 13.78 13.26 11.68 14.64 12.04
3 BMpoe 22.50 21.96 23.12 21.52 21.82 21.56 21.84 21.98 20.52
B Myps 11.18 21.36 21.94 16.24 21.66 22.32 19.36 22.16 22.16
B Mcpp 4.10 16.52 21.10 5.50 15.50 21.90 8.32 15.42 21.60
EM 7.06 13.44 13.34 7.42 12.38 12.88 10.68 11.52 12.30

* Note that Examples 1-3 have 15, 55 and 55 predictors, respectively.
* The EM provides more accurate variable selection than the other
approaches.
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Case Study
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(Ning et al., 2014)

Data Format

Variable Type

Variable Name

Physical Meaning

Pressure (N/m?)

The high pressure of the upper to lower plate

Controllable
Rotation (Rpm) The rotation speed
Process
LowPTime (Sec.) The time for low pressure
Variable 7
HighPTime (Sec.) The time for high pressure
CTHKO (pm) Central thickness of walers
TTVO (pm) Total thickness variation of wafers
TIRO (pm) Total indicator reading of wafers
Covariate

STIRO (pemn)
BOWO (pum)
WARPO (pm)

Site total indicator reading of wafers
Deviation of local warp at the center of wafers

Maximum of local warp of wafers

Quality Response

CTHK1 (pm)

Central thickness of wafers after lapping

19




Case Results - Prediction

20 Ensemble model has the
15 smallest prediction error.

10 l
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Figure. Prediction errors of models in a
lapping process (left to right: model based

on DOE data, OBS data, combined DOE
and OBS data. ensemble model)
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Case Results - Variable Selection
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Fig. 2. Variable selection on the wafer data for (a) BMpog: (b)
BMogs: (¢) BM-gp:and (d) E M. The order of predictors are Pres-
sure, Rotation, LowPTime, HighPTime, CTHKO, TTVO0, TIRO,
STIR0, BOWO0, and WARPO.



Summary of Ensemble Modeling

e Manufacturing Scale-up is an important step in product realization.
However, the process modeling and recipe optimization involves multiple
iterations of experiments and testing runs.

e Both experimental and observational data are collected in the scale-up
efforts, while current methodologies focus on the modeling and
improvement based on single type of data.

e We propose an ensemble modeling strategy for data fusion of the two
types of data for manufacturing process modeling by

e Model parametrization through nonnegative garrote
e Joint variable selection in two models with DOE and heredity constraints

e Constrained likelihood estimation

e Future work:
e Bayesian framework for data fusion and other variable selection

e Joint design of experiments and data selection
e Modeling between different generations of equipment
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Modeling Methodologies for
Better Quality and Higher Efficiency
(Modeling, Monitoring and Control)
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Summary

 Data fusion is about the integration of different types of variables, data sets
and information!

 The visualization is about delivery the right information to the right person at
the right time!

« Examples are shown in many different applications.

Ran Jin
jran5@vt.edu
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