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Motivation 

 Much of the statistical literature on optimal accelerated test planning 
uses methodology based on large-sample methods.  

 Assumes sufficient sample size or lifetime distribution.  

 Results in an approximation of the true variance.  

 These methods may not yield the desired precision under small-sample 
settings.  

 May underestimate the true precision, leading to a false sense of confidence. 

 Determining the exact variance is difficult due to the often intractable 
mathematics involved.  

 

Purpose is to create methodology for developing optimal test 
plans that are a function of the sample size.  
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Models and Notation – Log-Location Scale 
Family 

 Let 𝑡𝑖𝑗 be the observed time to failure of unit 𝑖 = 1,2,… , 𝑛𝑗 

tested at stress level 𝑗 = 1,2,… , 𝐽. 

 A distribution is a member of the log-location scale family if 
it’s density function is of the form 

𝑓 𝑡𝑖𝑗 =
1

𝜎𝑡𝑖𝑗
𝜙

ln 𝑡𝑖𝑗 − 𝜇𝑗

𝜎
 

 The location parameter 𝜇𝑗 will vary across stress levels while the scale 

parameter 𝜎 will be assumed constant across all stress levels.  

 An alternative form for these distributions is  

𝑔 𝑡𝑖𝑗 =
𝑘

𝜆𝑗

𝑡𝑖𝑗

𝜆𝑗

𝑘−1

𝜓
𝑡𝑖𝑗

𝜆𝑗

𝑘

 

 The transformation between the two forms is 𝜆𝑗 = 𝑒𝜇𝑗  and 𝑘 = 1
𝜎 . 
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Models and Notation – Log-Location Scale 
Family 

 The most popular members of this family are the lognormal 
and Weibull distributions. 

 Let z =
ln 𝑡𝑖𝑗 −𝜇𝑗

𝜎
 and 𝜔 =

𝑡𝑖𝑗

𝜆𝑗

𝑘
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Distribution 𝝓 𝒛  𝝍 𝝎  

Lognormal 
1

2𝜋
𝑒

−
𝑧2

2  
1

2𝜋
𝜔− 1+0.5 ln 𝜔  

Weibull 𝑒 𝑧−𝑒𝑧
 𝑒−𝜔 



Models and Notation – Log-Location Scale 
Family 

 The quantile function for a log-location scale family member 
is given as 

 𝑡𝑝𝑗 = 𝑒𝜇𝑗+𝜎𝑧𝑝  for the form 𝑓 𝑡𝑖𝑗 , where 𝑧𝑝 is the pth quantile of the 

standard form 

 𝑡𝑝𝑗 = 𝜆𝑗𝜔𝑝
1/𝑘

 for the form g 𝑡𝑖𝑗 , where 𝜔𝑝 is the pth quantile of the 

standard form 

 This is the quantile function we will focus on.   

 
 

7 

Distribution 𝒛𝒑 𝝎𝒑 

Lognormal Φ−1 𝑝  𝑒Φ−1 𝑝  

Weibull ln − ln 1 − 𝑝  − ln 1 − 𝑝  



Models and Notation – Acceleration Models 

 Let 𝑥𝑗 , 𝑗 = 0,1,2, … , 𝐽 represent the value of stress level 𝑗. 

 𝑗 = 0 represents the use condition 

 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝐽 

 The values are transformed such that 𝑥0 = 0 and 𝑥𝐽 = 1. 

 Let 𝑛𝑗 , 𝑗 = 1,2, . . , 𝐽 represent the number of samples allocated to stress 

level 𝑗. 

 The total sample size 𝑁 =  𝑛𝑗
𝐽
𝑗=1  

 Two acceleration models are considered: 
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Model 𝝀𝒋 𝝁𝒋 

Exponential Model  

(EM) 
𝜆𝑗 = 𝛼0𝛼1

𝑥𝑗
 𝜇𝑗 = 𝛽0 + 𝛽1𝑥𝑗 

Quadratic  

Exponential Model 

(QEM) 
𝜆𝑗 = 𝛼0𝛼1

𝑥𝑗𝛼2

𝑥𝑗
2

 𝜇𝑗 = 𝛽0 + 𝛽1𝑥𝑗 + 𝛽2𝑥𝑗
2 



Models and Notation – Acceleration Models 
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EM 

QEM 



Optimization Criteria 

Given a range and number of design points (𝒙), optimize the location of the 
design points and sample allocation (𝒏) to each point to yield minimum 
variance of the pth quantile estimator 𝑡 𝑝 at the use condition 𝑥0 = 0 . 

 Use p=0.9 and 𝑥1 = 0.1 for illustration.  

 Asymptotic Approach 

 min
𝒙,𝒏

𝐴𝑉𝑎𝑟 log 𝑡 𝑝 = 𝐴𝑉𝑎𝑟 𝛽 0 + 𝜎 𝑧𝑝  

 𝜎  either known or estimated; 𝑧𝑝 is the p-quantile of the standard form 

 Small-Sample Approach 

 min
𝒙,𝒏

𝑉𝑎𝑟 𝑡 𝑝 = 𝑉𝑎𝑟 𝛼 0𝜔𝑝
1/𝑘  

 𝑘  either known or estimated; 𝜔𝑝 is the p-quantile of the standard form 

 Where possible, the maximum likelihood (ML) estimator is used. 

 The number of design points is at least the number of unknown model 
parameters. 
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Small-Sample Method – Estimator Derivation 

1. Start with 𝜆𝑀,𝑗 = 𝛼0𝑓(𝑥𝑗; 𝜶) for specified model M 

2. Set up a system of  d  equations in d  unknown parameters 
and solve for 𝛼0 as a function of 𝜆𝑀,𝑗. 

 Other parameters may be irreducibly involved as well. 

3. Determine a suitable estimator for 𝜆𝑀,𝑗 and any other 

parameters. 

 𝜆 𝑀,𝑗 =  𝑡
𝑖𝑗

1/𝑛𝑗𝑛𝑗

𝑖=1
 for lognormal; 𝜆 𝑀,𝑗 =

1

𝑛𝑗
 𝑡𝑖𝑗

𝑘𝑛𝑗

𝑖=1

1/𝑘

 for Weibull 

4. Substitute in the estimators to yield the estimator for 𝛼0. 
 The estimation procedure yields the ML estimator under certain 

conditions. 

 Otherwise, referred to as Near-Exact (NE) estimator as it yields near-exact 
variance of ML estimator in specific settings. 
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Small-Sample Method – Estimator Derivation 
Example 

 For 𝜆𝑗 = 𝛼0𝛼1

𝑥𝑗
, 

 𝛼1 =
𝜆2

𝜆1

1

𝑥2−𝑥1;  𝛼0 = 𝜆1
𝜀21𝜆2

𝜀12  

 𝜀𝑖𝑗 =
𝑥𝑖

𝑥𝑖−𝑥𝑗
, throughout 

 

12 

Distribution 𝜶 𝟎 

Lognormal 𝜶 𝟎 =  𝑡𝑖1
1/𝑛1

𝑛1

𝑖=1

𝜀21

 𝑡𝑖2
1/𝑛2

𝑛2

𝑖=1

𝜀12

 

Weibull 𝜶 𝟎 =
1

𝑛1
 𝑡𝑖1

𝑘

𝑛1

𝑖=1

𝜀21/𝑘
1

𝑛2
 𝑡𝑖2

𝑘

𝑛2

𝑖=1

𝜀12/𝑘

 



Small-Sample Method – NEE Variance 

Model Parameters Design Points 
Sample 

Allocation Shape 

Parameter 

MLE 

Simulated 

Variance 

NEE  

Exact 

Variance 𝛽0 𝛽1 𝛽2 𝑥1 𝑥2 𝑥3 𝑛1 𝑛2 𝑛3 

2 -0.5 0.75 0.1 0.55 1 5 2 3 2 8.9504 8.9835 

2 -0.5 0.75 0.1 0.55 1 4 3 3 2 8.4315 8.4249 

2 -0.5 0.75 0.1 0.55 1 6 2 2 2 8.0119 8.0210 

2 -0.5 0.75 0.1 0.65 1 5 2 3 2 9.1159 9.1459 

2 -0.5 0.75 0.1 0.45 1 5 2 3 2 10.1036 10.1388 

2 -0.5 0.75 0.1 0.55 1 5 2 3 1 66.8808 66.9007 

2 -0.5 0.75 0.1 0.55 1 5 2 3 3 3.6038 3.6196 

1 -0.5 0.75 0.1 0.55 1 5 2 3 2 0.4877 0.4898 

3 -0.5 0.75 0.1 0.55 1 5 2 3 2 26.6288 26.7457 
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Simulations Based on QEM; Weibull Lifetime Distribution, Shape Parameter Known 



Small-Sample Method – QEM 
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Small-Sample Method – Variance Derivation 

 When the shape parameter is known, the variance of the 
quantile estimator is driven solely by the variance of the 
estimator 𝜶 𝟎. 

 When the shape parameter is unknown, the variance of the 
quantile estimator can be assessed using Monte Carlo 
integration. 
 Necessary for the Weibull distribution; optional for the lognormal, due 

to a closed yet complex form available. 
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Small-Sample Method – Variance Derivation 

 Exponential Model (𝛼 0 = 𝜆 1
𝜀21𝜆 2

𝜀12) 

 

 

 

 

 Quadratic Exponential Model (𝛼 0 = 𝜆 1
𝜀21𝜀31𝜆 2

𝜀12𝜀32𝜆 3
𝜀13𝜀23) 
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Distribution Var(𝜶 𝟎) 

Lognormal 𝛼0
2 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
− 1 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
 

Weibull 𝛼0
2

1

𝑛1
𝜀21𝑛2

𝜀12

2/𝑘 Γ 𝑛1 +
2𝜀21
𝑘

Γ 𝑛2 +
2𝜀12
𝑘

Γ 𝑛1 Γ 𝑛2
−

Γ 𝑛1 +
𝜀21
𝑘

Γ 𝑛2 +
𝜀12
𝑘

Γ 𝑛1 Γ 𝑛2

2

 

Distribution Var(𝜶 𝟎) 

Lognormal 𝛼0
2 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
− 1 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
 

Weibull 

𝛼0
2

1

𝑛1
𝜀21𝑛2

𝜀12

2/𝑘
 
Γ 𝑛1 +

2𝜀21𝜀31
𝑘

Γ 𝑛2 +
2𝜀12𝜀32

𝑘
Γ 𝑛3 +

2𝜀13𝜀23
𝑘

Γ 𝑛1 Γ 𝑛2 Γ 𝑛3

−
Γ 𝑛1 +

𝜀21𝜀31
𝑘

Γ 𝑛2 +
𝜀12𝜀32

𝑘
Γ 𝑛3 +

𝜀13𝜀23
𝑘

Γ 𝑛1 Γ 𝑛2 Γ 𝑛3

2

 
 

Shape Parameter Known 



Small-Sample Method – Weibull Shape 
Parameter ML Estimator 

 For the Weibull distribution with unknown shape parameter, 
the shape parameter ML estimator does not have a closed 
form.  

 It is known in the literature that the quantity 1 𝑙 = 𝑘 
𝑘  has a 

distribution that does not depend on any unknown quantities. 


𝑘

𝑙  is used in place of k in the point estimators of 𝜆  

 Simulations show that the quantity 𝑙 = 𝑘
𝑘   is very well 

approximated by a gamma distribution with shape parameter 
6 𝑁−𝐼 −1

4
 and scale parameter 

3(2𝑁−𝐼)

4
 , where N is the total 

number of samples and I is the number of design points. 
 Used in the Monte Carlo integration.  
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Small-Sample Method – Weibull Shape 
Parameter ML Estimator 
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Large-Sample Method – Asymptotic Variance 
Derivation 

1. Start with 𝜇𝑀,𝑗 = 𝛽0 + 𝑓(𝑥𝑗; 𝜷) for specified model M 

2. Compute the Fisher Information Matrix 𝑰 𝛽0, 𝜷′, 𝜎 . 

3. Compute the asymptotic variance as  

𝐴𝑉𝑎𝑟 𝑡 𝑝 = 1 𝟎′ 𝑧𝑝 𝑰−1 𝛽0, 𝜷′, 𝜎 1 𝟎′ 𝑧𝑝 ’ 
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Model 𝑨𝑽𝒂𝒓 𝒕 𝒑  

EM 𝜎2
𝜀21

2

𝑛1
+

𝜀12
2

𝑛2
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

QEM 𝜎2
𝜀21

2 𝜀31
2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

Distribution Var(𝜶 𝟎) 

Lognormal - EM 𝛼0
2 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
− 1 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
 

Lognormal - QEM 𝛼0
2 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
− 1 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
 



Large-Sample Method – Asymptotic Variance 
Derivation 

1. Start with 𝜇𝑀,𝑗 = 𝛽0 + 𝑓(𝑥𝑗; 𝜷) for specified model M 

2. Compute the Fisher Information Matrix 𝑰 𝛽0, 𝜷′, 𝜎 . 

3. Compute the asymptotic variance as  

𝐴𝑉𝑎𝑟 𝑡 𝑝 = 1 𝟎′ 𝑧𝑝 𝑰−1 𝛽0, 𝜷′, 𝜎 1 𝟎′ 𝑧𝑝 ’ 
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Model 𝑨𝑽𝒂𝒓 𝒕 𝒑  

EM 𝜎2
𝜺𝟐𝟏

𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐

𝒏𝟐
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

QEM 𝜎2
𝜺𝟐𝟏

𝟐 𝜺𝟑𝟏
𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐 𝜺𝟑𝟐

𝟐

𝒏𝟐
+

𝜺𝟏𝟑
𝟐 𝜺𝟐𝟑

𝟐

𝒏𝟑
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

Distribution Var(𝜶 𝟎) 

Lognormal - EM 𝛼0
2 exp

1

𝑘2

𝜺𝟐𝟏
𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐

𝒏𝟐
− 1 exp

1

𝑘2

𝜺𝟐𝟏
𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐

𝒏𝟐
 

Lognormal - QEM 𝛼0
2 exp

1

𝑘2

𝜺𝟐𝟏
𝟐 𝜺𝟑𝟏

𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐 𝜺𝟑𝟐

𝟐

𝒏𝟐
+

𝜺𝟏𝟑
𝟐 𝜺𝟐𝟑

𝟐

𝒏𝟑
− 1 exp

1

𝑘2

𝜺𝟐𝟏
𝟐 𝜺𝟑𝟏

𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐 𝜺𝟑𝟐

𝟐

𝒏𝟐
+

𝜺𝟏𝟑
𝟐 𝜺𝟐𝟑

𝟐

𝒏𝟑
 



Test Plan Comparison – EM 

Sample allocation to 𝒙𝟐 
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Test Plan Comparison – QEM 
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Sample allocation to 𝒙𝟐 

Sample allocation to 𝒙𝟑 



Test Plan Comparison – QEM 
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Location of 𝒙𝟐 



Test Plan Comparisons – Variance Ratios 
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EM 

QEM 



Sample Size Determination 

 Very little in literature on how to determine necessary sample 
size to achieve desired precision in optimal ALT design.  

 Can easily be obtained by “inverting” optimal design. 
 Given a method for creating an optimal design, what is the minimum 

sample size needed to drop below a given threshold of precision. 

 Will depend on some knowledge of shape parameter.  
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Sample Size Determination 
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Summary 

 There is a clear distinction between test plans based on either 
methodology. 
 Greatest discrepancy for extremely small sample sizes and highly 

skewed distribution (roughly 20-60% difference). 

 Two methods start to be more consistent for sample sizes around 20 
or above. 

 Test plans seem to be relatively robust to lack of knowledge 
regarding shape parameter.   

 Smart use of computational tools and techniques can help 
deal with complicated mathematics.  
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Future Research 

 Allow for the possibility of censoring in the data. 
 Progress has already been made in deriving suitable estimator for 

Type I censoring under Weibull with known shape parameter.  

 Consider other areas for generalization. 
 Multiple acceleration factors 

 Competing risks 

 More complex models and distributions 

 Continue to refine and develop procedure as new situations 
arise.  
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Thank You! 
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Appendix 



Asymptotic Variance Expression Derivation 

 Let 𝑢𝑗𝑘 =
𝜕𝜇𝑗

𝜕𝜃𝑘
 
𝑥𝑗

 and 𝑧𝑖𝑗 =
𝑦𝑖𝑗−𝜇𝑗 𝑥𝑗;𝜃1,𝜃2

𝜎
. 

 Further define, 

 ℎ1 = ΕΖ −
𝑑2

𝑑𝑧2 ln 𝜙 𝑧  

 ℎ2 = ΕΖ −𝑧
𝑑2

𝑑𝑧2 ln 𝜙 𝑧  

 ℎ3 = ΕΖ −𝑧2 𝑑2

𝑑𝑧2 ln 𝜙 𝑧  

 

 𝚮 =
ℎ1 ℎ2

ℎ2 ℎ3 + 1
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Asymptotic Variance Expression Derivation 

 Let 𝑰𝜃  be the Fisher information matrix. 

 Define 𝑼𝑗𝑗′ =
𝑢𝑗1 𝑢𝑗′1

𝑢𝑗2 𝑢𝑗′2
 and  

𝐴𝑉𝑎𝑟 𝑦 𝑝 = 𝑢01 𝑢02 𝑧𝑝 𝑰𝜃
−1 𝑢01 𝑢02 𝑧𝑝 𝑇 

 It follows that  

 𝑰𝜃 =
ℎ1

𝜎6 𝑁𝑛1𝑛2 𝑼12
2 𝑯  

 𝐴𝑉𝑎𝑟 𝑦 𝑝 =
𝜎2

ℎ1

1

𝑛2

𝑼01

𝑼12

2
+

1

𝑛1

𝑼02

𝑼12

2
+

ℎ1
2

𝑁 𝑯
𝑧𝑝 −

ℎ2

ℎ1

𝑼02

𝑼12
−

𝑼01

𝑼12

2
 

 For three parameters, it follows from similar reasoning that  
 

 𝐴𝑉𝑎𝑟 𝑦 𝑝 =
𝜎2

ℎ1

1

𝑛2

𝑼013

𝑼123

2
+

1

𝑛1

𝑼023

𝑼123

2
+

1

𝑛3

𝑼012

𝑼123

2
+

ℎ1
2

𝑁 𝑯
𝑧𝑝 −

ℎ2

ℎ1

𝑼012

𝑼123
+

𝑼023

𝑼123
−

𝑼013

𝑼123

2
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