Exceptional service in the national interest

Comparison of ALT Plans Based on Exact Small-Sample Methodology and Asymptotic Large-Sample Methodology

> Dr. Caleb King Statistical Sciences Dept. Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgements

 This work supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

Outline

- Motivation
- Models, Notation, and Optimization Criteria
- Small-Sample and Large-Sample Methodology
- Test Plan Comparisons
- Sample Size Selection
- Summary and Conclusions

Motivation

- Much of the statistical literature on optimal accelerated test planning uses methodology based on large-sample methods.
 - Assumes sufficient sample size or lifetime distribution.
 - Results in an approximation of the true variance.
- These methods may not yield the desired precision under small-sample settings.
 - May underestimate the true precision, leading to a false sense of confidence.
- Determining the exact variance is difficult due to the often intractable mathematics involved.

Purpose is to create methodology for developing optimal test plans that are a function of the sample size.

Models and Notation – Log-Location Scale Family

- Let t_{ij} be the observed time to failure of unit i = 1,2, ..., n_j tested at stress level j = 1,2, ..., J.
- A distribution is a member of the *log-location scale* family if it's density function is of the form

$$f(t_{ij}) = \frac{1}{\sigma t_{ij}} \phi\left(\frac{\ln(t_{ij}) - \mu_j}{\sigma}\right)$$

- The location parameter μ_j will vary across stress levels while the scale parameter σ will be assumed constant across all stress levels.
- An alternative form for these distributions is

$$g(t_{ij}) = \frac{k}{\lambda_j} \left(\frac{t_{ij}}{\lambda_j}\right)^{k-1} \psi\left[\left(\frac{t_{ij}}{\lambda_j}\right)^k\right]$$

• The transformation between the two forms is $\lambda_j = e^{\mu_j}$ and $k = 1/\sigma$.

Models and Notation – Log-Location Scale Family

 The most popular members of this family are the lognormal and Weibull distributions.

• Let
$$z = \frac{\ln(t_{ij}) - \mu_j}{\sigma}$$
 and $\omega = \left(\frac{t_{ij}}{\lambda_j}\right)^k$

Distribution	$\phi(z)$	$oldsymbol{\psi}(oldsymbol{\omega})$		
Lognormal	$\frac{1}{\sqrt{2\pi}}e^{\left(-\frac{z^2}{2}\right)}$	$\frac{1}{\sqrt{2\pi}}\omega^{-(1+0.5\ln\omega)}$		
Weibull	$e^{(z-e^z)}$	$e^{-\omega}$		

Models and Notation – Log-Location Scale Family

- The quantile function for a log-location scale family member is given as
 - $t_{pj} = e^{\mu_j + \sigma z_p}$ for the form $f(t_{ij})$, where z_p is the *p*th quantile of the standard form
 - $t_{pj} = \lambda_j \omega_p^{1/k}$ for the form $g(t_{ij})$, where ω_p is the *p*th quantile of the standard form
 - This is the quantile function we will focus on.

Distribution	z_p	ω_p
Lognormal	$\Phi^{-1}(p)$	$e^{\Phi^{-1}(p)}$
Weibull	$\ln(-\ln(1-p))$	$-\ln(1-p)$

Models and Notation – Acceleration Models

- Let x_j , j = 0, 1, 2, ..., J represent the value of stress level j.
 - j = 0 represents the use condition
 - $x_0 < x_1 < x_2 < \dots < x_J$
 - The values are transformed such that $x_0 = 0$ and $x_J = 1$.
- Let n_j, j = 1,2,.., J represent the number of samples allocated to stress level j.
 - The total sample size $N = \sum_{j=1}^{J} n_j$
- Two acceleration models are considered:

Model	λ_j	μ_j
Exponential Model (EM)	$\lambda_j = \alpha_0 \alpha_1^{x_j}$	$\mu_j = \beta_0 + \beta_1 x_j$
Quadratic Exponential Model (QEM)	$\lambda_j = \alpha_0 \alpha_1^{x_j} \alpha_2^{x_j^2}$	$\mu_j = \beta_0 + \beta_1 x_j + \beta_2 x_j^2$

Models and Notation – Acceleration Models in Sandia Laboratories

Optimization Criteria

Given a range and number of design points (x), optimize the location of the design points and sample allocation (n) to each point to yield minimum variance of the pth quantile estimator \hat{t}_p at the use condition $x_0 = 0$.

- Use p=0.9 and $x_1 = 0.1$ for illustration.
- Asymptotic Approach
 - $\min_{\boldsymbol{x},\boldsymbol{n}} AVar(\log \hat{t}_p) = AVar(\hat{\beta}_0 + \tilde{\sigma}z_p)$
 - $\tilde{\sigma}$ either known or estimated; z_p is the *p*-quantile of the standard form
- Small-Sample Approach
 - $\min_{\boldsymbol{x},\boldsymbol{n}} Var(\hat{t}_p) = Var(\hat{\alpha}_0 \omega_p^{1/\tilde{k}})$
 - \tilde{k} either known or estimated; ω_p is the *p*-quantile of the standard form
- Where possible, the maximum likelihood (ML) estimator is used.
- The number of design points is at least the number of unknown model parameters.

Small-Sample Method – Estimator Derivation

- 1. Start with $\lambda_{M,j} = \alpha_0 f(x_j; \boldsymbol{\alpha})$ for specified model M
- 2. Set up a system of *d* equations in *d* unknown parameters and solve for α_0 as a function of $\lambda_{M,j}$.
 - Other parameters may be irreducibly involved as well.
- 3. Determine a suitable estimator for $\lambda_{M,j}$ and any other parameters.

$$\hat{\lambda}_{M,j} = \prod_{i=1}^{n_j} t_{ij}^{1/n_j}$$
 for lognormal; $\hat{\lambda}_{M,j} = \left(\frac{1}{n_j} \sum_{i=1}^{n_j} t_{ij}^k\right)^{1/k}$ for Weibull

- 4. Substitute in the estimators to yield the estimator for α_0 .
- The estimation procedure yields the ML estimator under certain conditions.
 - Otherwise, referred to as Near-Exact (NE) estimator as it yields near-exact variance of ML estimator in specific settings.

Small-Sample Method – Estimator Derivation

• For
$$\lambda_j = \alpha_0 \alpha_1^{x_j}$$
,
• $\alpha_1 = \left(\frac{\lambda_2}{\lambda_1}\right)^{\frac{1}{x_2 - x_1}}; \ \alpha_0 = \lambda_1^{\varepsilon_{21}} \lambda_2^{\varepsilon_{12}}$
• $\varepsilon_{ij} = \frac{x_i}{x_i - x_j}$, throughout

Distribution	$\widehat{\alpha}_{0}$
Lognormal	$\widehat{\boldsymbol{\alpha}}_{0} = \left(\prod_{i=1}^{n_1} t_{i1}^{1/n_1}\right)^{\varepsilon_{21}} \left(\prod_{i=1}^{n_2} t_{i2}^{1/n_2}\right)^{\varepsilon_{12}}$
Weibull	$\widehat{\boldsymbol{\alpha}}_{0} = \left(\frac{1}{n_1} \sum_{i=1}^{n_1} t_{i1}^k\right)^{\varepsilon_{21}/k} \left(\frac{1}{n_2} \sum_{i=1}^{n_2} t_{i2}^k\right)^{\varepsilon_{12}/k}$

Small-Sample Method – NEE Variance

Simulations Based on QEM; Weibull Lifetime Distribution, Shape Parameter Known

Model Parameters		Design Points		Sample Allocation		Shape	MLE Simulated	NEE Exact			
β_0	eta_1	β_2	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	n_1	n_2	<i>n</i> ₃	Parameter	Variance	Variance
2	-0.5	0.75	0.1	0.55	1	5	2	3	2	8.9504	8.9835
2	-0.5	0.75	0.1	0.55	1	4	3	3	2	8.4315	8.4249
2	-0.5	0.75	0.1	0.55	1	6	2	2	2	8.0119	8.0210
2	-0.5	0.75	0.1	0.65	1	5	2	3	2	9.1159	9.1459
2	-0.5	0.75	0.1	0.45	1	5	2	3	2	10.1036	10.1388
2	-0.5	0.75	0.1	0.55	1	5	2	3	1	66.8808	66.9007
2	-0.5	0.75	0.1	0.55	1	5	2	3	3	3.6038	3.6196
1	-0.5	0.75	0.1	0.55	1	5	2	3	2	0.4877	0.4898
3	-0.5	0.75	0.1	0.55	1	5	2	3	2	26.6288	26.7457

Small-Sample Method – QEM

Small-Sample Method – Variance Derivation

- When the shape parameter is known, the variance of the quantile estimator is driven solely by the variance of the estimator $\hat{\alpha}_0$.
- When the shape parameter is unknown, the variance of the quantile estimator can be assessed using Monte Carlo integration.
 - Necessary for the Weibull distribution; optional for the lognormal, due to a closed yet complex form available.

Small-Sample Method – Variance Derivation

Shape Parameter Known

• Exponential Model ($\hat{\alpha}_0 = \hat{\lambda}_1^{\varepsilon_{21}} \hat{\lambda}_2^{\varepsilon_{12}}$)

Distribution	$Var(\hat{\alpha}_0)$
Lognormal	$\alpha_0^2 \left\{ \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2}{n_1} + \frac{\varepsilon_{12}^2}{n_2}\right)\right] - 1 \right\} \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2}{n_1} + \frac{\varepsilon_{12}^2}{n_2}\right)\right]$
Weibull	$\alpha_0^2 \left(\frac{1}{n_1^{\varepsilon_{21}} n_2^{\varepsilon_{12}}}\right)^{2/k} \left\{ \frac{\Gamma\left(n_1 + \frac{2\varepsilon_{21}}{k}\right) \Gamma\left(n_2 + \frac{2\varepsilon_{12}}{k}\right)}{\Gamma(n_1)\Gamma(n_2)} - \left[\frac{\Gamma\left(n_1 + \frac{\varepsilon_{21}}{k}\right) \Gamma\left(n_2 + \frac{\varepsilon_{12}}{k}\right)}{\Gamma(n_1)\Gamma(n_2)}\right]^2 \right\}$

• Quadratic Exponential Model ($\hat{\alpha}_0 = \hat{\lambda}_1^{\varepsilon_{21}\varepsilon_{31}}\hat{\lambda}_2^{\varepsilon_{12}\varepsilon_{32}}\hat{\lambda}_3^{\varepsilon_{13}\varepsilon_{23}}$)

Distribution	$Var(\hat{\alpha}_0)$
Lognormal	$\alpha_0^2 \left\{ \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2 \varepsilon_{31}^2}{n_1} + \frac{\varepsilon_{12}^2 \varepsilon_{32}^2}{n_2} + \frac{\varepsilon_{13}^2 \varepsilon_{23}^2}{n_3}\right)\right] - 1 \right\} \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2 \varepsilon_{31}^2}{n_1} + \frac{\varepsilon_{12}^2 \varepsilon_{32}^2}{n_2} + \frac{\varepsilon_{13}^2 \varepsilon_{23}^2}{n_3}\right)\right]$
Weibull	$ \alpha_0^2 \left(\frac{1}{n_1^{\varepsilon_{21}} n_2^{\varepsilon_{12}}} \right)^{2/k} \left\{ \frac{\Gamma\left(n_1 + \frac{2\varepsilon_{21}\varepsilon_{31}}{k}\right) \Gamma\left(n_2 + \frac{2\varepsilon_{12}\varepsilon_{32}}{k}\right) \Gamma\left(n_3 + \frac{2\varepsilon_{13}\varepsilon_{23}}{k}\right)}{\Gamma(n_1)\Gamma(n_2)\Gamma(n_3)} - \left[\frac{\Gamma\left(n_1 + \frac{\varepsilon_{21}\varepsilon_{31}}{k}\right) \Gamma\left(n_2 + \frac{\varepsilon_{12}\varepsilon_{32}}{k}\right) \Gamma\left(n_3 + \frac{\varepsilon_{13}\varepsilon_{23}}{k}\right)}{\Gamma(n_1)\Gamma(n_2)\Gamma(n_3)} \right]^2 \right\} $

Small-Sample Method – Weibull Shape Parameter ML Estimator

- For the Weibull distribution with unknown shape parameter, the shape parameter ML estimator does not have a closed form.
- It is known in the literature that the quantity $1/l = \hat{k}/k$ has a distribution that does not depend on any unknown quantities.
 - k/l is used in place of k in the point estimators of $\tilde{\lambda}$
- Simulations show that the quantity $l = \frac{k}{k}$ is very well approximated by a gamma distribution with shape parameter $\frac{6(N-I)-1}{4}$ and scale parameter $\frac{3(2N-I)}{4}$, where N is the total number of samples and I is the number of design points.
 - Used in the Monte Carlo integration.

Small-Sample Method – Weibull Shape Parameter ML Estimator

Large-Sample Method – Asymptotic Variance

- 1. Start with $\mu_{M,j} = \beta_0 + f(x_j; \beta)$ for specified model *M*
- 2. Compute the Fisher Information Matrix $I(\beta_0, \beta', \sigma)$.
- 3. Compute the asymptotic variance as

 $AVar(\hat{t}_p) = (1 \quad \mathbf{0}' \quad z_p)\mathbf{I}^{-1}(\beta_0, \boldsymbol{\beta}', \sigma)(1 \quad \mathbf{0}' \quad z_p)'$

Model	$AVar(\hat{t}_p)$
EM	$\sigma^{2} \left\{ \frac{\varepsilon_{21}^{2}}{n_{1}} + \frac{\varepsilon_{12}^{2}}{n_{2}} + \left(quadratic \ in \ z_{p} \right) \right\}$
QEM	$\sigma^{2} \left\{ \frac{\varepsilon_{21}^{2} \varepsilon_{31}^{2}}{n_{1}} + \frac{\varepsilon_{12}^{2} \varepsilon_{32}^{2}}{n_{2}} + \frac{\varepsilon_{13}^{2} \varepsilon_{23}^{2}}{n_{3}} + (quadratic \ in \ z_{p}) \right\}$
Distribution	$Var(\hat{\alpha}_0)$
Lognormal - EM	$\alpha_0^2 \left\{ \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2}{n_1} + \frac{\varepsilon_{12}^2}{n_2}\right)\right] - 1 \right\} \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2}{n_1} + \frac{\varepsilon_{12}^2}{n_2}\right)\right]$
Lognormal - QEM	$\alpha_0^2 \left\{ \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2 \varepsilon_{31}^2}{n_1} + \frac{\varepsilon_{12}^2 \varepsilon_{32}^2}{n_2} + \frac{\varepsilon_{13}^2 \varepsilon_{23}^2}{n_3}\right)\right] - 1 \right\} \exp\left[\frac{1}{k^2} \left(\frac{\varepsilon_{21}^2 \varepsilon_{31}^2}{n_1} + \frac{\varepsilon_{12}^2 \varepsilon_{32}^2}{n_2} + \frac{\varepsilon_{13}^2 \varepsilon_{23}^2}{n_3}\right)\right] = 0$

Large-Sample Method – Asymptotic Variance

- 1. Start with $\mu_{M,j} = \beta_0 + f(x_j; \beta)$ for specified model *M*
- 2. Compute the Fisher Information Matrix $I(\beta_0, \beta', \sigma)$.
- 3. Compute the asymptotic variance as

 $AVar(\hat{t}_p) = (1 \quad \mathbf{0}' \quad z_p)\mathbf{I}^{-1}(\beta_0, \boldsymbol{\beta}', \sigma)(1 \quad \mathbf{0}' \quad z_p)'$

Test Plan Comparison – EM

Sample allocation to x_2

Test Plan Comparison – QEM

Sample allocation to x_3

Shape Unknown

Test Plan Comparison – QEM

Location of *x*₂

23

Test Plan Comparisons – Variance Ratios

k=1 k=4

50

50

----- k=1 ----- k=4 ----- k=2 ---- k=8 ----- k=3

---- k=2 --- k=8

40

40

EM

Sample Size Determination

- Very little in literature on how to determine necessary sample size to achieve desired precision in optimal ALT design.
- Can easily be obtained by "inverting" optimal design.
 - Given a method for creating an optimal design, what is the minimum sample size needed to drop below a given threshold of precision.
- Will depend on some knowledge of shape parameter.

Sample Size Determination

Summary

- There is a clear distinction between test plans based on either methodology.
 - Greatest discrepancy for extremely small sample sizes and highly skewed distribution (roughly 20-60% difference).
 - Two methods start to be more consistent for sample sizes around 20 or above.
- Test plans seem to be relatively robust to lack of knowledge regarding shape parameter.
- Smart use of computational tools and techniques can help deal with complicated mathematics.

Future Research

- Allow for the possibility of censoring in the data.
 - Progress has already been made in deriving suitable estimator for Type I censoring under Weibull with known shape parameter.
- Consider other areas for generalization.
 - Multiple acceleration factors
 - Competing risks
 - More complex models and distributions
- Continue to refine and develop procedure as new situations arise.

Thank You!

Appendix

Asymptotic Variance Expression Derivation

• Let
$$u_{jk} = \frac{\partial \mu_j}{\partial \theta_k} \Big|_{x_j}$$
 and $z_{ij} = \frac{y_{ij} - \mu_j(x_j; \theta_1, \theta_2)}{\sigma}$.

Further define,

•
$$h_1 = E_Z \left[-\frac{d^2}{dz^2} \ln\{\phi(z)\} \right]$$

• $h_2 = E_Z \left[-z \frac{d^2}{dz^2} \ln\{\phi(z)\} \right]$
• $h_3 = E_Z \left[-z^2 \frac{d^2}{dz^2} \ln\{\phi(z)\} \right]$

•
$$\mathbf{H} = \begin{bmatrix} h_1 & h_2 \\ h_2 & h_3 + 1 \end{bmatrix}$$

32

Asymptotic Variance Expression Derivation

- Let I_{θ} be the Fisher information matrix.
- Define $U_{jj'} = \begin{bmatrix} u_{j1} & u_{j'1} \\ u_{j2} & u_{j'2} \end{bmatrix}$ and $AVar(\hat{y}_p) = \begin{bmatrix} u_{01} & u_{02} & Z_p \end{bmatrix} I_{\theta}^{-1} \begin{bmatrix} u_{01} & u_{02} & Z_p \end{bmatrix}^T$
- It follows that
 - $|I_{\theta}| = \frac{h_1}{\sigma^6} N n_1 n_2 |U_{12}|^2 |H|$
 - $AVar(\hat{y}_p) = \frac{\sigma^2}{h_1} \left\{ \frac{1}{n_2} \left(\frac{|U_{01}|}{|U_{12}|} \right)^2 + \frac{1}{n_1} \left(\frac{|U_{02}|}{|U_{12}|} \right)^2 + \frac{h_1^2}{N|H|} \left[z_p \frac{h_2}{h_1} \left(\frac{|U_{02}|}{|U_{12}|} \frac{|U_{01}|}{|U_{12}|} \right) \right]^2 \right\}$
 - For three parameters, it follows from similar reasoning that

$$AVar(\hat{y}_p) = \frac{\sigma^2}{h_1} \left\{ \frac{1}{n_2} \left(\frac{|\boldsymbol{U}_{013}|}{|\boldsymbol{U}_{123}|} \right)^2 + \frac{1}{n_1} \left(\frac{|\boldsymbol{U}_{023}|}{|\boldsymbol{U}_{123}|} \right)^2 + \frac{1}{n_3} \left(\frac{|\boldsymbol{U}_{012}|}{|\boldsymbol{U}_{123}|} \right)^2 + \frac{h_1^2}{N|\boldsymbol{H}|} \left[z_p - \frac{h_2}{h_1} \left(\frac{|\boldsymbol{U}_{012}|}{|\boldsymbol{U}_{123}|} + \frac{|\boldsymbol{U}_{023}|}{|\boldsymbol{U}_{123}|} - \frac{|\boldsymbol{U}_{013}|}{|\boldsymbol{U}_{123}|} \right)^2 \right\}$$

