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Motivation i) st

=  Much of the statistical literature on optimal accelerated test planning
uses methodology based on large-sample methods.

= Assumes sufficient sample size or lifetime distribution.
= Results in an approximation of the true variance.
= These methods may not yield the desired precision under small-sample
settings.
= May underestimate the true precision, leading to a false sense of confidence.

=  Determining the exact variance is difficult due to the often intractable
mathematics involved.

Purpose is to create methodology for developing optimal test
plans that are a function of the sample size.




Models and Notation — Log-Location Scale e
Family

Laboratories

Let t;; be the observed time to failure of uniti = 1,2, ..., n;
tested at stress level j = 1,2, ..., ].

= Adistribution is a member of the log-location scale family if
it’s density function is of the form

o) = aiij ] (m(tu) - uj)

0}

" The location parameter u; will vary across stress levels while the scale
parameter o will be assumed constant across all stress levels.

= An alternative form for these distributions is

k—1 k
Y4\ 4
= The transformation between the two forms is /1j =eliand k =1/,.
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= The most popular members of this family are the lognormal
and Weibull distributions.

k
1 t::)—1LL: tq::
" letz = n(ti)) #’andw=(ﬂ)

o Aj
z>2 1
Lognormal L e(‘?) o~ (1+051n w)
V21 V21

Weibull e(z=e?) e~ v




Models and Notation — Log-Location Scale e
Family

Laboratories

= The quantile function for a log-location scale family member
IS given as
= t,; = e!i?% for the form f(tij), where z,, is the pth quantile of the
standard form
"ty = Ajw;/k for the form g(tij), where w,, is the pth quantile of the
standard form

= This is the quantile function we will focus on.

Lognormal o~ 1(p) e® '@
Weibull In(—In(1 — p)) —In(1 - p)
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Models and Notation — Acceleration Models (A e,

" letx;,j = 0,1,2, ...,] represent the value of stress level j.
= j = 0 represents the use condition
=Xy <xp <Xy << X
= The values are transformed such that x, = 0 and x; = 1.
= Lletn;j=12,..,] represent the number of samples allocated to stress
level j.

= The total sample size N = Z;zlnj

= Two acceleration models are considered:

Exponential Model

(EM) A = aoafj 1j = Bo + P1x;
Quadratic X
Exponential Model A =apa ] Wi = Bo + Brxj + Baxf
(QEM)
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Given a range and number of design points (x), optimize the location of the
design points and sample allocation (n) to each point to yield minimum
variance of the pth quantile estimator fp at the use conditionx, = 0.

= Use p=0.9 and x; = 0.1 for illustration.

Asymptotic Approach
= minAVar(logt,) = AVar(B, + 6z
P (log p) (Bo p)
" 0 either known or estimated; z, is the p-quantile of the standard form

= Small-Sample Approach

5 rg;n Var(t,) = Var (o?oa);/k)
=k either known or estimated; w), is the p-quantile of the standard form
=  Where possible, the maximum likelihood (ML) estimator is used.
= The number of design points is at least the number of unknown model
parameters.
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Small-Sample Method — Estimator Derivation!™ E

1. Startwith Ay ; = aof (x;; a) for specified model M

2. Setup asystem of d equationsin d unknown parameters
and solve for @, as a function of 4y ;.

=  QOther parameters may be irreducibly involved as well.

3. Determine a suitable estimator for A4), ; and any other

parameters.
1/k
s G =TTY M 1¢N Lk :
mj =112, t;; for lognormal; AMJ (njzi=1tif) for Weibull

4. Substitute in the estimators to yield the estimator for «a,.

= The estimation procedure yields the ML estimator under certain
conditions.

= Otherwise, referred to as Near-Exact (NE) estimator as it yields near-exact

variance of ML estimator in specific settings.
11
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x-
= For; = apa;’,

1

— Az X2—X1, — 1€2119€12

Xi

" g = -, throughout

Xi—Xj
Distribution
nq €21 s ny €12
Lognormal a():(l_[ till/n1> ( tilz/n2>

1=1 =1
1 nq £21/k 1 n, €12/k
Weibull g = <_ t{g) <_z tikz>
np 4 n; 4
=1 =1




Small-Sample Method — NEE Variance ) &5,

Simulations Based on QEM; Weibull Lifetime Distribution, Shape Parameter Known

. : Sample
Design Points : MLE NEE
Allocation SUED Simulated Exact

Model Parameters

Bo By B, X, X, X3 Ny Ny  Ns Parameter Variance Variance
2 -05 075 01 055 1 5 2 3 2 8.9504 8.9835
2 -05 0.75 0.1 0.55 1 4 3 3 2 8.4315 8.4249
2 -05 075 0.1 0.55 1 6 2 2 2 8.0119 8.0210
2 -0.5 0.75 0.1 0.65 1 5 2 3 2 9.1159 9.1459
2 -05 0.75 0.1 045 1 5 2 3 2 10.1036 10.1388
2 -05 075 01 055 1 5 2 3 1 66.8808 66.9007
2 -05 075 01 055 1 5 2 3 3 3.6038 3.6196
1 -05 075 01 055 1 5 2 3 2 0.4877 0.4898
3 -05 075 01 055 1 5 2 3 2 26.6288 26.7457
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Small-Sample Method — QEM h) i,

Density
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Small-Sample Method — Variance Derivation @&

= When the shape parameter is known, the variance of the
guantile estimator is driven solely by the variance of the
estimator a,.

= When the shape parameter is unknown, the variance of the
guantile estimator can be assessed using Monte Carlo
integration.

= Necessary for the Weibull distribution; optional for the lognormal, due
to a closed yet complex form available.
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Small-Sample Method — Variance Derivation @&

Shape Parameter Known

= Exponential Model (&, = 4;2*1'2)

Distribution

1 (g2, &2 1 (g2, &2
Loanormal 2 (2, f1z ) (2, f12
ognorma ag {exp [k2<n1 + - 1¢exp 7e) + -
2¢ 2¢ £ €12\1°
2/k 21 12 21 12
Weibull o2 (=t {F("” )T (n2 + 7 )_[F(”1+ 2)r(ne + ) }
ni“n;“ ['(ny)T(ny) ['(ny)l(ny)

. . A 27€21€31 7€12€32 7€13€
= Quadratic Exponential Model (@ = A** 721112732 451729

Distribution

1 (2.2, g2 2, g2 g2 1 [e2. 2. 22 g2 g2
Loanormal ; 1 (18 | 2852 | Eizdas)| _ 1 (31831 | €283 | Ei3823
g ap {exp k2< - + - + = exp 02 - + - + -
28,1 & 281, 2812E
T ol e L e
) T '(n)I'(n,)I'(n
Weibull n,- n, (n)I'(ny)r'(n3) 2
E91E £19E £12E
o 2o 2452 o 252
I'(n)T'(ny)I'(n3) 6



Small-Sample Method — Weibull Shape =)
Parameter ML Estimator
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= For the Weibull distribution with unknown shape parameter,
the shape parameter ML estimator does not have a closed
form.

= |tis known in the literature that the quantity 1/, = ’A‘/k has a
distribution that does not depend on any unknown gquantities.

= K/ is used in place of k in the point estimators of 1

= Simulations show that the quantity [ = k/f{ is very well

approximated by a gamma distribution with shape parameter
6(N—1)—1 3(2N-I)

and scale parameter , where N is the total

number of samples and / is the number of design points.
= Used in the Monte Carlo integration.
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Small-Sample Method — Weibull Shape
Parameter ML Estimator

Density
1.0
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Large-Sample Method — Asymptotic Variance g s,
Derivation

1. Startwith uy ; = Bo + f(x;; B) for specified model M
2. Compute the Fisher Information Matrix I(B,, B, 0).

3. Compute the asymptotic variance as
Avar(E,) =1 0 z)I7 (B, B,0)(1 0 2z

EM 2 5221+€122+( oo
o e quadratic in z,
£2 g2 202 g2 o2
QEM 02{ 2250 ¢ 2202 4 B8 4 (quadratic in zp)}
nq n, ns
Distribution Var(a,)
1 (&5 &) (1 (3, ¢&f
Lognormal - EM 2 (2120 q (2, f12
g ap {exp k2<n1 7z )] exp i\ T,
1 [(e2,e2, eXe2, elers)] (1 [(e2,e2, 2,62, el e2
Lognormal - OEM a2 {exp |— (E21531 | Bizf2 | Fisfis\| gl | 1 (E21861 | Fi2f32 | istis
k?2\ ny n, ng /| K2\ ny n, N, 9




Large-Sample Method — Asymptotic Variance g s,
Derivation

1. Startwith uy ; = Bo + f(x;; B) for specified model M
2. Compute the Fisher Information Matrix I(B,, B, 0).

3. Compute the asymptotic variance as
Avar(E,) =1 0 z)I7 (B, B,0)(1 0 2z

5%1 8%2
EM o? {— +—=+ (quadratic in zp)}
ng n;
2 .2 2 .2 2 .2
£5.€ g4, € g4, €
QEM 02{ AL S g S (quadratic in Zp)}
nq n, ns
Distribution Var(ay)
1 (g2, &2,\] 1 (e, &2
Lognormal - EM adlexp ||+ =2 )| - 1texp| |+ —=
k nq n, | k nq n,
1 (2,65, &2,6%, &2.€2.\] 1 (2,65, &2,62, &%.€2
_ 2 il 21<31 12<32 13<23 _ - 21<31 12<32 13<23
Lognormal - QEM o {exp k2< ny " n; i n; > 1}eXp k2< ny " n; " ns >l
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Sample allocation to x,

Shape Known Shape Unknown
© 6 — 6
E £
g 5 g
g 2 5
4 4
:‘-3 [=>) 3
£ g
@ 2 G ™~
& w = 2
@ g w
2 o 1 5
:_ & 1
10 20 30 40 50 =

Total Sample Size
Total Sample Size




Test Plan Comparison — QEM rh) jers_

Sample allocation to x,

Shape Known Shape Unknown
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Test Plan Comparisons — Variance Ratios ) e

Ratio of Variance Factors
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Sample Size Determination ) feuma,

= Very little in literature on how to determine necessary sample
size to achieve desired precision in optimal ALT design.
= Can easily be obtained by “inverting” optimal design.

= Given a method for creating an optimal design, what is the minimum
sample size needed to drop below a given threshold of precision.

= Will depend on some knowledge of shape parameter.
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Sample Size Determination
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= There is a clear distinction between test plans based on either
methodology.

= Greatest discrepancy for extremely small sample sizes and highly
skewed distribution (roughly 20-60% difference).

= Two methods start to be more consistent for sample sizes around 20
or above.

= Test plans seem to be relatively robust to lack of knowledge
regarding shape parameter.

= Smart use of computational tools and techniques can help
deal with complicated mathematics.
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= Allow for the possibility of censoring in the data.

= Progress has already been made in deriving suitable estimator for
Type | censoring under Weibull with known shape parameter.

= Consider other areas for generalization.
= Multiple acceleration factors
= Competing risks
= More complex models and distributions

= Continue to refine and develop procedure as new situations
arise.
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Asymptotic Variance Expression Derivation ) feimat

ou;
= Let uj =£ and z;; =
x.
]

Vij—H;(xj;01,62)
- .

= Further define,
f = By [~ S In{p ()]
t hy =Bz [~z In{¢(2)}]

+ by = By [-2% (g ()]

hl hZ
h, hs+1
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Asymptotic Variance Expression Derivation @&,

" Let Iy be the Fisher information matrix.

Uj U;r
. _ W1 Y
= Define U;j, = [ujz uj’z] and

AVar()?p)=[uo1 Uoz  Zp|Iz'[Uo1r Uoz Zp]T
= |t follows that

h
= |I| = G—an1n2|U12|2|H|

5 o (1 (Uoi\* | 1 (Us2]\* | h3 h, (U Uo11\12
" AVar(yp) = — —(l—(’ll) + _(M) 4 1 Zy — _2(| ozl | 01|)]
hy (ny \|U12| n1 \|Uq5| N|H| hy \|U{5] |U,|

= For three parameters, it follows from similar reasoning that

. ~) _oi(1 |Uo13|)2 i(|U023|)2 i(|U012|)2 hi [ _Q(|U012| [Uo2s| |Uo13|)]2
AVar(yp) Chy {nz (|U123| + T T N|H]| “p T

nq \|Uq23l nz \|Uq23l hy \|U123] * U123  [Uq23l
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