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Motivation 

 Much of the statistical literature on optimal accelerated test planning 
uses methodology based on large-sample methods.  

 Assumes sufficient sample size or lifetime distribution.  

 Results in an approximation of the true variance.  

 These methods may not yield the desired precision under small-sample 
settings.  

 May underestimate the true precision, leading to a false sense of confidence. 

 Determining the exact variance is difficult due to the often intractable 
mathematics involved.  

 

Purpose is to create methodology for developing optimal test 
plans that are a function of the sample size.  
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Models and Notation – Log-Location Scale 
Family 

 Let 𝑡𝑖𝑗 be the observed time to failure of unit 𝑖 = 1,2,… , 𝑛𝑗 

tested at stress level 𝑗 = 1,2,… , 𝐽. 

 A distribution is a member of the log-location scale family if 
it’s density function is of the form 

𝑓 𝑡𝑖𝑗 =
1

𝜎𝑡𝑖𝑗
𝜙

ln 𝑡𝑖𝑗 − 𝜇𝑗

𝜎
 

 The location parameter 𝜇𝑗 will vary across stress levels while the scale 

parameter 𝜎 will be assumed constant across all stress levels.  

 An alternative form for these distributions is  

𝑔 𝑡𝑖𝑗 =
𝑘

𝜆𝑗

𝑡𝑖𝑗

𝜆𝑗

𝑘−1

𝜓
𝑡𝑖𝑗

𝜆𝑗

𝑘

 

 The transformation between the two forms is 𝜆𝑗 = 𝑒𝜇𝑗  and 𝑘 = 1
𝜎 . 
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Models and Notation – Log-Location Scale 
Family 

 The most popular members of this family are the lognormal 
and Weibull distributions. 

 Let z =
ln 𝑡𝑖𝑗 −𝜇𝑗

𝜎
 and 𝜔 =

𝑡𝑖𝑗

𝜆𝑗

𝑘
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Distribution 𝝓 𝒛  𝝍 𝝎  

Lognormal 
1

2𝜋
𝑒

−
𝑧2

2  
1

2𝜋
𝜔− 1+0.5 ln 𝜔  

Weibull 𝑒 𝑧−𝑒𝑧
 𝑒−𝜔 



Models and Notation – Log-Location Scale 
Family 

 The quantile function for a log-location scale family member 
is given as 

 𝑡𝑝𝑗 = 𝑒𝜇𝑗+𝜎𝑧𝑝  for the form 𝑓 𝑡𝑖𝑗 , where 𝑧𝑝 is the pth quantile of the 

standard form 

 𝑡𝑝𝑗 = 𝜆𝑗𝜔𝑝
1/𝑘

 for the form g 𝑡𝑖𝑗 , where 𝜔𝑝 is the pth quantile of the 

standard form 

 This is the quantile function we will focus on.   
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Distribution 𝒛𝒑 𝝎𝒑 

Lognormal Φ−1 𝑝  𝑒Φ−1 𝑝  

Weibull ln − ln 1 − 𝑝  − ln 1 − 𝑝  



Models and Notation – Acceleration Models 

 Let 𝑥𝑗 , 𝑗 = 0,1,2, … , 𝐽 represent the value of stress level 𝑗. 

 𝑗 = 0 represents the use condition 

 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝐽 

 The values are transformed such that 𝑥0 = 0 and 𝑥𝐽 = 1. 

 Let 𝑛𝑗 , 𝑗 = 1,2, . . , 𝐽 represent the number of samples allocated to stress 

level 𝑗. 

 The total sample size 𝑁 =  𝑛𝑗
𝐽
𝑗=1  

 Two acceleration models are considered: 
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Model 𝝀𝒋 𝝁𝒋 

Exponential Model  

(EM) 
𝜆𝑗 = 𝛼0𝛼1

𝑥𝑗
 𝜇𝑗 = 𝛽0 + 𝛽1𝑥𝑗 

Quadratic  

Exponential Model 

(QEM) 
𝜆𝑗 = 𝛼0𝛼1

𝑥𝑗𝛼2

𝑥𝑗
2

 𝜇𝑗 = 𝛽0 + 𝛽1𝑥𝑗 + 𝛽2𝑥𝑗
2 



Models and Notation – Acceleration Models 
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EM 

QEM 



Optimization Criteria 

Given a range and number of design points (𝒙), optimize the location of the 
design points and sample allocation (𝒏) to each point to yield minimum 
variance of the pth quantile estimator 𝑡 𝑝 at the use condition 𝑥0 = 0 . 

 Use p=0.9 and 𝑥1 = 0.1 for illustration.  

 Asymptotic Approach 

 min
𝒙,𝒏

𝐴𝑉𝑎𝑟 log 𝑡 𝑝 = 𝐴𝑉𝑎𝑟 𝛽 0 + 𝜎 𝑧𝑝  

 𝜎  either known or estimated; 𝑧𝑝 is the p-quantile of the standard form 

 Small-Sample Approach 

 min
𝒙,𝒏

𝑉𝑎𝑟 𝑡 𝑝 = 𝑉𝑎𝑟 𝛼 0𝜔𝑝
1/𝑘  

 𝑘  either known or estimated; 𝜔𝑝 is the p-quantile of the standard form 

 Where possible, the maximum likelihood (ML) estimator is used. 

 The number of design points is at least the number of unknown model 
parameters. 
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Small-Sample Method – Estimator Derivation 

1. Start with 𝜆𝑀,𝑗 = 𝛼0𝑓(𝑥𝑗; 𝜶) for specified model M 

2. Set up a system of  d  equations in d  unknown parameters 
and solve for 𝛼0 as a function of 𝜆𝑀,𝑗. 

 Other parameters may be irreducibly involved as well. 

3. Determine a suitable estimator for 𝜆𝑀,𝑗 and any other 

parameters. 

 𝜆 𝑀,𝑗 =  𝑡
𝑖𝑗

1/𝑛𝑗𝑛𝑗

𝑖=1
 for lognormal; 𝜆 𝑀,𝑗 =

1

𝑛𝑗
 𝑡𝑖𝑗

𝑘𝑛𝑗

𝑖=1

1/𝑘

 for Weibull 

4. Substitute in the estimators to yield the estimator for 𝛼0. 
 The estimation procedure yields the ML estimator under certain 

conditions. 

 Otherwise, referred to as Near-Exact (NE) estimator as it yields near-exact 
variance of ML estimator in specific settings. 
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Small-Sample Method – Estimator Derivation 
Example 

 For 𝜆𝑗 = 𝛼0𝛼1

𝑥𝑗
, 

 𝛼1 =
𝜆2

𝜆1

1

𝑥2−𝑥1;  𝛼0 = 𝜆1
𝜀21𝜆2

𝜀12  

 𝜀𝑖𝑗 =
𝑥𝑖

𝑥𝑖−𝑥𝑗
, throughout 
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Distribution 𝜶 𝟎 

Lognormal 𝜶 𝟎 =  𝑡𝑖1
1/𝑛1

𝑛1

𝑖=1

𝜀21

 𝑡𝑖2
1/𝑛2

𝑛2

𝑖=1

𝜀12

 

Weibull 𝜶 𝟎 =
1

𝑛1
 𝑡𝑖1

𝑘

𝑛1

𝑖=1

𝜀21/𝑘
1

𝑛2
 𝑡𝑖2

𝑘

𝑛2

𝑖=1

𝜀12/𝑘

 



Small-Sample Method – NEE Variance 

Model Parameters Design Points 
Sample 

Allocation Shape 

Parameter 

MLE 

Simulated 

Variance 

NEE  

Exact 

Variance 𝛽0 𝛽1 𝛽2 𝑥1 𝑥2 𝑥3 𝑛1 𝑛2 𝑛3 

2 -0.5 0.75 0.1 0.55 1 5 2 3 2 8.9504 8.9835 

2 -0.5 0.75 0.1 0.55 1 4 3 3 2 8.4315 8.4249 

2 -0.5 0.75 0.1 0.55 1 6 2 2 2 8.0119 8.0210 

2 -0.5 0.75 0.1 0.65 1 5 2 3 2 9.1159 9.1459 

2 -0.5 0.75 0.1 0.45 1 5 2 3 2 10.1036 10.1388 

2 -0.5 0.75 0.1 0.55 1 5 2 3 1 66.8808 66.9007 

2 -0.5 0.75 0.1 0.55 1 5 2 3 3 3.6038 3.6196 

1 -0.5 0.75 0.1 0.55 1 5 2 3 2 0.4877 0.4898 

3 -0.5 0.75 0.1 0.55 1 5 2 3 2 26.6288 26.7457 
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Simulations Based on QEM; Weibull Lifetime Distribution, Shape Parameter Known 



Small-Sample Method – QEM 
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Small-Sample Method – Variance Derivation 

 When the shape parameter is known, the variance of the 
quantile estimator is driven solely by the variance of the 
estimator 𝜶 𝟎. 

 When the shape parameter is unknown, the variance of the 
quantile estimator can be assessed using Monte Carlo 
integration. 
 Necessary for the Weibull distribution; optional for the lognormal, due 

to a closed yet complex form available. 
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Small-Sample Method – Variance Derivation 

 Exponential Model (𝛼 0 = 𝜆 1
𝜀21𝜆 2

𝜀12) 

 

 

 

 

 Quadratic Exponential Model (𝛼 0 = 𝜆 1
𝜀21𝜀31𝜆 2

𝜀12𝜀32𝜆 3
𝜀13𝜀23) 
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Distribution Var(𝜶 𝟎) 

Lognormal 𝛼0
2 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
− 1 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
 

Weibull 𝛼0
2

1

𝑛1
𝜀21𝑛2

𝜀12

2/𝑘 Γ 𝑛1 +
2𝜀21
𝑘

Γ 𝑛2 +
2𝜀12
𝑘

Γ 𝑛1 Γ 𝑛2
−

Γ 𝑛1 +
𝜀21
𝑘

Γ 𝑛2 +
𝜀12
𝑘

Γ 𝑛1 Γ 𝑛2

2

 

Distribution Var(𝜶 𝟎) 

Lognormal 𝛼0
2 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
− 1 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
 

Weibull 

𝛼0
2

1

𝑛1
𝜀21𝑛2

𝜀12

2/𝑘
 
Γ 𝑛1 +

2𝜀21𝜀31
𝑘

Γ 𝑛2 +
2𝜀12𝜀32

𝑘
Γ 𝑛3 +

2𝜀13𝜀23
𝑘

Γ 𝑛1 Γ 𝑛2 Γ 𝑛3

−
Γ 𝑛1 +

𝜀21𝜀31
𝑘

Γ 𝑛2 +
𝜀12𝜀32

𝑘
Γ 𝑛3 +

𝜀13𝜀23
𝑘

Γ 𝑛1 Γ 𝑛2 Γ 𝑛3

2

 
 

Shape Parameter Known 



Small-Sample Method – Weibull Shape 
Parameter ML Estimator 

 For the Weibull distribution with unknown shape parameter, 
the shape parameter ML estimator does not have a closed 
form.  

 It is known in the literature that the quantity 1 𝑙 = 𝑘 
𝑘  has a 

distribution that does not depend on any unknown quantities. 


𝑘

𝑙  is used in place of k in the point estimators of 𝜆  

 Simulations show that the quantity 𝑙 = 𝑘
𝑘   is very well 

approximated by a gamma distribution with shape parameter 
6 𝑁−𝐼 −1

4
 and scale parameter 

3(2𝑁−𝐼)

4
 , where N is the total 

number of samples and I is the number of design points. 
 Used in the Monte Carlo integration.  
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Small-Sample Method – Weibull Shape 
Parameter ML Estimator 
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Large-Sample Method – Asymptotic Variance 
Derivation 

1. Start with 𝜇𝑀,𝑗 = 𝛽0 + 𝑓(𝑥𝑗; 𝜷) for specified model M 

2. Compute the Fisher Information Matrix 𝑰 𝛽0, 𝜷′, 𝜎 . 

3. Compute the asymptotic variance as  

𝐴𝑉𝑎𝑟 𝑡 𝑝 = 1 𝟎′ 𝑧𝑝 𝑰−1 𝛽0, 𝜷′, 𝜎 1 𝟎′ 𝑧𝑝 ’ 
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Model 𝑨𝑽𝒂𝒓 𝒕 𝒑  

EM 𝜎2
𝜀21

2

𝑛1
+

𝜀12
2

𝑛2
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

QEM 𝜎2
𝜀21

2 𝜀31
2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

Distribution Var(𝜶 𝟎) 

Lognormal - EM 𝛼0
2 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
− 1 exp

1

𝑘2

𝜀21
2

𝑛1
+

𝜀12
2

𝑛2
 

Lognormal - QEM 𝛼0
2 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
− 1 exp

1

𝑘2

𝜀21
2 𝜀31

2

𝑛1
+

𝜀12
2 𝜀32

2

𝑛2
+

𝜀13
2 𝜀23

2

𝑛3
 



Large-Sample Method – Asymptotic Variance 
Derivation 

1. Start with 𝜇𝑀,𝑗 = 𝛽0 + 𝑓(𝑥𝑗; 𝜷) for specified model M 

2. Compute the Fisher Information Matrix 𝑰 𝛽0, 𝜷′, 𝜎 . 

3. Compute the asymptotic variance as  

𝐴𝑉𝑎𝑟 𝑡 𝑝 = 1 𝟎′ 𝑧𝑝 𝑰−1 𝛽0, 𝜷′, 𝜎 1 𝟎′ 𝑧𝑝 ’ 
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Model 𝑨𝑽𝒂𝒓 𝒕 𝒑  

EM 𝜎2
𝜺𝟐𝟏

𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐

𝒏𝟐
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

QEM 𝜎2
𝜺𝟐𝟏

𝟐 𝜺𝟑𝟏
𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐 𝜺𝟑𝟐

𝟐

𝒏𝟐
+

𝜺𝟏𝟑
𝟐 𝜺𝟐𝟑

𝟐

𝒏𝟑
+ 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑖𝑛 𝑧𝑝  

Distribution Var(𝜶 𝟎) 

Lognormal - EM 𝛼0
2 exp

1

𝑘2

𝜺𝟐𝟏
𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐

𝒏𝟐
− 1 exp

1

𝑘2

𝜺𝟐𝟏
𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐

𝒏𝟐
 

Lognormal - QEM 𝛼0
2 exp

1

𝑘2

𝜺𝟐𝟏
𝟐 𝜺𝟑𝟏

𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐 𝜺𝟑𝟐

𝟐

𝒏𝟐
+

𝜺𝟏𝟑
𝟐 𝜺𝟐𝟑

𝟐

𝒏𝟑
− 1 exp

1

𝑘2

𝜺𝟐𝟏
𝟐 𝜺𝟑𝟏

𝟐

𝒏𝟏
+

𝜺𝟏𝟐
𝟐 𝜺𝟑𝟐

𝟐

𝒏𝟐
+

𝜺𝟏𝟑
𝟐 𝜺𝟐𝟑

𝟐

𝒏𝟑
 



Test Plan Comparison – EM 

Sample allocation to 𝒙𝟐 
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Test Plan Comparison – QEM 
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Sample allocation to 𝒙𝟐 

Sample allocation to 𝒙𝟑 



Test Plan Comparison – QEM 
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Location of 𝒙𝟐 



Test Plan Comparisons – Variance Ratios 
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EM 

QEM 



Sample Size Determination 

 Very little in literature on how to determine necessary sample 
size to achieve desired precision in optimal ALT design.  

 Can easily be obtained by “inverting” optimal design. 
 Given a method for creating an optimal design, what is the minimum 

sample size needed to drop below a given threshold of precision. 

 Will depend on some knowledge of shape parameter.  
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Sample Size Determination 

26 



Summary 

 There is a clear distinction between test plans based on either 
methodology. 
 Greatest discrepancy for extremely small sample sizes and highly 

skewed distribution (roughly 20-60% difference). 

 Two methods start to be more consistent for sample sizes around 20 
or above. 

 Test plans seem to be relatively robust to lack of knowledge 
regarding shape parameter.   

 Smart use of computational tools and techniques can help 
deal with complicated mathematics.  
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Future Research 

 Allow for the possibility of censoring in the data. 
 Progress has already been made in deriving suitable estimator for 

Type I censoring under Weibull with known shape parameter.  

 Consider other areas for generalization. 
 Multiple acceleration factors 

 Competing risks 

 More complex models and distributions 

 Continue to refine and develop procedure as new situations 
arise.  
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Thank You! 
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Appendix 



Asymptotic Variance Expression Derivation 

 Let 𝑢𝑗𝑘 =
𝜕𝜇𝑗

𝜕𝜃𝑘
 
𝑥𝑗

 and 𝑧𝑖𝑗 =
𝑦𝑖𝑗−𝜇𝑗 𝑥𝑗;𝜃1,𝜃2

𝜎
. 

 Further define, 

 ℎ1 = ΕΖ −
𝑑2

𝑑𝑧2 ln 𝜙 𝑧  

 ℎ2 = ΕΖ −𝑧
𝑑2

𝑑𝑧2 ln 𝜙 𝑧  

 ℎ3 = ΕΖ −𝑧2 𝑑2

𝑑𝑧2 ln 𝜙 𝑧  

 

 𝚮 =
ℎ1 ℎ2

ℎ2 ℎ3 + 1
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Asymptotic Variance Expression Derivation 

 Let 𝑰𝜃  be the Fisher information matrix. 

 Define 𝑼𝑗𝑗′ =
𝑢𝑗1 𝑢𝑗′1

𝑢𝑗2 𝑢𝑗′2
 and  

𝐴𝑉𝑎𝑟 𝑦 𝑝 = 𝑢01 𝑢02 𝑧𝑝 𝑰𝜃
−1 𝑢01 𝑢02 𝑧𝑝 𝑇 

 It follows that  

 𝑰𝜃 =
ℎ1

𝜎6 𝑁𝑛1𝑛2 𝑼12
2 𝑯  

 𝐴𝑉𝑎𝑟 𝑦 𝑝 =
𝜎2

ℎ1

1

𝑛2

𝑼01

𝑼12

2
+

1

𝑛1

𝑼02

𝑼12

2
+

ℎ1
2

𝑁 𝑯
𝑧𝑝 −

ℎ2

ℎ1

𝑼02

𝑼12
−

𝑼01

𝑼12

2
 

 For three parameters, it follows from similar reasoning that  
 

 𝐴𝑉𝑎𝑟 𝑦 𝑝 =
𝜎2

ℎ1

1

𝑛2

𝑼013

𝑼123

2
+

1

𝑛1

𝑼023

𝑼123

2
+

1

𝑛3

𝑼012

𝑼123

2
+

ℎ1
2

𝑁 𝑯
𝑧𝑝 −

ℎ2

ℎ1

𝑼012

𝑼123
+

𝑼023

𝑼123
−

𝑼013

𝑼123

2
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