Planning Fatigue Tests for Polymer Composites

Yili Hong¹

The 2017 Fall Technical Conference October 5, 2017

joint work with Caleb King ², Stephanie DeHart ³, Patrick DeFeo ⁴, and Rong Pan ⁵

¹Department of Statistics, Virginia Tech, Blacksburg, VA

²Statistics Group, Sandia National Labs., Albuquerque, NM

³Applied Statistics Group, Eastman Chemical, Kingsport, TN

⁴Applied Statistics Group, DuPont, Wilmington, DE

⁵School of CIDSE, Arizona State University, Tempe, AZ

Background

- Fatigue testing, data, and model
- Statistical optimum test plan
- Comparisons of test plans
- Test plan assessments
- Conclusion and areas for future research

- Polymer composites are widely used in many applications.
- A composite is any material made of more than one component.
- Polymer composites are made from polymers or from polymers along with other kinds of materials.
- Advantages: light, resist heat and corrosion, cost effective.
- Wind turbine blades are usually made of polymer composite because they are lighter than metals thus can provide more energy.

Polymer Composites

- Polymer composites consist of fibers embedded in a resilient plastic matrix.
- The fiber provides the strength, or reinforcement, for the composite material, and the matrix provides the support.

Fatigue Testing

- The fatigue and other properties of the materials need to be tested and to meet certain standards.
- Fatigue occurs when the material is subject to varying levels of stress over a period of time.
- The most common form of fatigue testing is cyclic constant amplitude fatigue testing.
- The current standards: ASTM E739, ASTM D3479

(日)

Cyclic Fatigue Testing

- Cyclic constant amplitude fatigue test is widely used to test the coupon until it fails.
- The number of cycles are recorded.
- Samples are tested under several different level of maximum stress σ_{max}.

The Problem and Objective

- One main goal of fatigue test is to demonstrate that a p proportion of the materials can last a certain number of cycles under the use stress level with some confidence.
- This is related to the estimation of the quantile of the cycles to failure distribution.
- The current standards and engineering practice use balanced designs (i.e., equal allocation of samples).
- The objective of this talk is to applied statistical optimum test planning techniques to polymer composites fatigue testing.
- It is possible to have more accurate estimates, less test duration, and less number of samples to be tested.

The Motivating Dataset

- Five samples tested for ultimate tensile strength σ_u.
- Three stress levels used.
- Three samples for each level.
- The fitted line is the S-N curve.
- Data were re-scaled.

- The ultimate tensile strength is denoted by σ_u .
- Let *s* be the number of stress levels and k_i be the samples allocated to stress levels $i, i = 1, \dots, s$.
- The total sample size is $k = \sum_{i=1}^{s} k_i$.
- σ_i the maximum stress for level *i*.
- The data are denoted by {N_{ij}, d_{ij}}, j = 1,..., k_i, i = 1,..., s, where d_{ij} is the censoring indicator.

(日)(1)<

Model for Cycles to Failure

- The log location scale family of distribution is used to describe the cycles to failure N_{ij} (e.g., lognormal and the Weibull).
- The location parameter is μ_i(A, B) and scale parameter is ν.
- The model for μ_i(A, B) is based on Epaarachchi and Clausen (2003):

$$\mu_i(A,B) = \frac{1}{B} \log \left\{ \left(\frac{B}{A}\right) f^B \left(\frac{\sigma_u}{\sigma_i} - 1\right) \left(\frac{\sigma_u}{\sigma_i}\right)^{\gamma(\alpha) - 1} [1 - \psi(R)]^{-\gamma(\alpha)} + 1 \right\}$$

• The unknown parameters are $\theta = (A, B, \nu)'$.

Parameter Interpretations

- Parameter A represents environmental effects on the fatigue process.
- Parameter *B* is material specific.
- The parameter ψ is a function of the ratio $R = \sigma_{\min} / \sigma_{\max}$, where

$$\psi(\mathbf{R}) = \begin{cases} \mathbf{R} & -\infty < \mathbf{R} < 1\\ \frac{1}{\mathbf{R}} & 1 < \mathbf{R} < \infty \end{cases}$$

- The parameter γ(α) = 1.6 ψ| sin (α)| is a function of the smallest angle α between the testing direction and the fiber direction.
- Parameter *f* is the frequency of the cyclic testing procedure.

- The *p* quantile of the cycles to failure distributions at a use condition σ_{use} is denoted by N_p(σ_{use}).
- The parameter θ is estimated by using the maximum likelihood (ML).
- Let $\widehat{N}_{p}(\sigma_{use})$ be the estimator, obtained by substituting in $\widehat{\theta}$.
- The large sample variance of is AVar $\{\log | \hat{N}_{p}(\sigma_{use}) | \}$, which is calculated by using the Fisher information matrix and the delta method (formulae available in paper).

(日)(1)<

Multiple Use Conditions

- Most existing work focuses on test planning under a single use condition.
- In real application, the stress under the use condition is time varying.
- While it is challenging to consider test planning under random use profile, we consider test planning under multiple use conditions.

・ コット (雪) (小田) (コット 日)

Test Plan Setup

- We consider there is a range of use conditions, $\sigma_{\text{use},l}, l = 1, \dots, L$, and we know their relative frequency, $\xi_l, l = 1, \dots, L$.
- Let *N_m* be the maximum number of cycles allowed for a test at a single stress level.
- Let q_i = σ_i/σ_u represent the maximum stress at level *i* subject to q_i ∈ [q_L, q_U], where q_L and q_U are the pre-specified lower and upper bounds of the planning range.
- Let $\pi_i = k_i/k$ be the proportion of the total sample size allocated to level *i*.
- Let $\eta = (q_1, \dots, q_s, \pi_1, \dots, \pi_s)'$ be the vector of design parameters.

Statistical Optimum Design

• The statistical optimum design is obtained by minimizing:

$$\min_{\boldsymbol{\eta}} \sum_{l} \xi_{l} \operatorname{AVar} \left\{ \log \left[\widehat{N}_{p}(\sigma_{\mathrm{use},l}) \right] \right\}$$

subject to $q_{i} \in [q_{L}, q_{U}], i = 1, \dots, s,$
 $\pi_{i} \in [\pi_{\min}, 1], i = 1, \dots, s,$
and $\sum_{i} \pi_{i} = 1.$

- Numerical methods are needed to do the optimization.
- A statistical optimum design always ends up with two level of stress for this test planning problem.

Traditional and Compromise Plans

- Traditional Plan
 - Currently used in standards.
 - Use equal allocation.
 - For the motivating example, consists of three stress levels $(q_1 = 0.35, q_2 = 0.50, q_3 = 0.75)$ and equal allocation to each level $(\pi_i = 1/3, i = 1, 2, 3)$.
- Optimum Plan
 - No constraints on number of stress levels required or amount allocated to each level.
 - Achieve maximum efficiency but may not be robust.
- Compromise Plan
 - Subject to a constraint on the minimum number of stress levels and minimum allocation to each level.

• With both efficiency and robustness.

- The range for stress q_i is [0.35, 0.75].
- For compromise plans, a minimum distance of 0.10 is enforced for any two stress levels, π_{min} = 0.10.
- Take $N_m = 2M$ cycles, the expected fraction failing are $p_L = 0.002$ and $p_U = 1$, for lognormal distribution.
- Take $N_m = 5M$ cycles, the expected fraction failing are $p_L = 0.258$ and $p_U = 1$, for lognormal distribution.
- From the pilot data, A = 0.00499, B = 0.397, $\nu = 0.421$, $\sigma_u = 303.4$, f = 3, and R = 0.1.

Use Stress Pattern

- Minimizing the asymptotic variance of the 0.05-quantile of the cycles to failure distribution.
- The use stresses range is from $q_{useL} = 0.05$ to $q_{useL} = 0.25$, with the following relative frequency.

Comparison of Test Plans

• Total sample size k = 12.

N _m	AVar	% AVar	Str	Allocation				
			q_1	q_2	q_3	k_1	k ₂	k ₃
2 <i>M</i>	0.759		0.35	0.50	0.75	4	4	4
	0.326	57%	0.43	-	0.75	8	-	4
	0.482	36%	0.36	0.46	0.75	3	5	4
5 <i>M</i>	0.306		0.35	0.50	0.75	4	4	4
	0.202	34%	0.36	-	0.75	8	-	4
	0.236	22%	0.36	0.64	0.75	7	2	3

Effect of Sample Size

• Assess the effect of total sample size, $N_m = 5M$.

Total sample size

(日)

æ

Effect of Censoring Time

• Assess the effect of censoring time, k = 12.

A D > A P > A D > A D >

æ.

Four Different Stress Patterns Under Use Conditions

• Total sample size k = 12 and $N_m = 5M$.

Plan	Pattern	AVar	Str	Allocation				
Fian			q_1	q_2	q_3	k_1	k ₂	k ₃
Trad.	1	0.307	0.35	0.5	0.75	4	4	4
	2	0.155	0.35	0.5	0.75	4	4	4
	3	0.217	0.35	0.5	0.75	4	4	4
	4	0.235	0.35	0.5	0.75	4	4	4
Optimum	1	0.202	0.36		0.75	8		4
	2	0.100	0.35	-	0.75	9	-	3
	3	0.143	0.36	-	0.75	8	-	4
	4	0.155	0.36	-	0.75	8	-	4
Comp.	1	0.236	0.36	0.64	0.74	7	2	3
	2	0.114	0.35	0.65	0.75	8	2	2
	3	0.163	0.36	0.65	0.75	8	2	2
	4	0.181	0.36	0.63	0.75	7	2	3

Sensitivity Analysis of Parameter Values–Traditional

• Effect of the model parameters, k = 12, and $N_m = 5M$.

Sensitivity Analysis of Parameter Values–Optimum

• Effect of the model parameters, k = 12, and $N_m = 5M$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Sensitivity Analysis of Parameter Values–Compromise

• Effect of the model parameters, k = 12, and $N_m = 5M$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sensitivity Analysis of Distributional Assumption

• Effect of total sample size when the underlying distribution is the Weibull, $N_m = 5M$.

- We applied statistical optimum test planning techniques to fatigue test on polymer composites.
- Both sample size and censoring time will effect on the optimum criterion and test plan configuration.
- We also did sensitivity analysis on the effects parameter values and distributional assumptions.
- Both optimum and compromise plans are more efficient than the traditional plan. The compromise plan is recommended for both the consideration of efficiency and robustness.

Areas for Future Research

- Perform simulation studies to compare exact and large-sample variances at selected design parameters.
- Fatigue testing planning under time varying use profile.
- Fatigue testing planning involves multiple variables (e.g., R values).
- Test planning when the focus is on parameter estimation (e.g., estimate the S-N curve).
- Test planning under block and spectral loading profiles.

Thank You with the oldest composite material!

Composite materials have actually been around for quite a long time. As early as 3000 B.C., the ancient Egyptians embedded straw in their mud bricks.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで