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John Cornell’s Youden Address (at 36th FTC in 1992) 
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Jack Youden’s Experimentation and Measurement 

 
 This talk will cover: 

• A roadmap for Measurement 

Systems Analysis (MSA) will be 

presented that has proved useful 

in guiding MSA studies for six 

sigma improvement projects. 

• A review of DuPont’s Strategy of 

Experimentation that has been 

taught and used successfully for 

over 50 years. 

• A response surface example with 

both “design” (or “control”) and 

“environmental” (or “noise”) 

factors, showing how to     

achieve both “functional”         

and “robust” products.   
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Measurement System Analysis (MSA) 

MSA is the process of … 

– Identifying potential sources of measurement 

variation  

– Choosing the appropriate analysis tool to 

quantify variation in the measurement system  

– Comparing the extent of measurement 

variation to what is required for your needs 

(project) 

– Improving the measurement system to reduce 

variation, if necessary 
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Two Fundamental Questions of MSA 

#1:  “Is the variation (spread) of the measurement system 

too large to successfully achieve the objectives?” 

+ = 

M
e
a
s
u
re

m
e
n
t 

V
a
ri
a
b
ili

ty
 

(O
b
s
e
rv

e
d
 V

a
ri
a
b
ili

ty
) 

T
o
ta

l 
V

a
ri
a
b
ili

ty
 

P
ro

c
e
s
s
 V

a
ri
a
b
ili

ty
 

(A
c
tu

a
l 
V

a
ri
a
b
ili

ty
 o

f 

th
e
 o

u
tp

u
t)

 

#2:  “What must be done to assure that the measurement 

system is adequate?” 
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MSA Evaluates and Minimizes the Extent  

of Measurement Variation 

Observed 

variation  

in Y 

Variation caused by         Variation caused by             Total variation 

the measurement         the process                          observed in Y + = 
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What Causes Measurement Variation? 

Variation in the 

measurement 

process 

Machines 

(msmt tool) 
People 

Environment Materials Method 

Observed 

variation  

in Y 
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MSA Roadmap 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Activity: Operational Definition 

• Count the following:  

(a) number of blue shirts in the room  

(b) number of tall people in the room  

(c) number of old people in the room 

• Record your number 

• Tally numbers on the front chart pad 

• Discuss the results  

 



13 

“Blue Shirt” Operational Definition 

What is a shirt and how can you 
determine if it is blue? 

• A shirt is any garment that covers 70% or more of the torso, above 

the skirt or pants of the wearer, and the lower extremity of which 

garment (when hanging freely) falls between 3” and 7” (incl.) below 

the utmost line of the skirt or pants.  If the wearer is wearing neither 

skirt nor pants, then the garment in question is not a shirt. 

• Any shirt so defined will be held to be blue if more than 50% of its 

outward and visible surface (as worn) is blue in color. 

• Any color will be deemed to be blue if it matches any portion of the 

marked ranges on the color cards provided when both shirt and cards 

are judged by an inspector medically certified as having passed the 

U.S.A.F. test for color-blindness. 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Simple Measurements 

• Examples of possible simple measurements 

– Cycle Times (Hours, Days, Months) 

– Cost to Repair a Piece of Equipment  

– Number of Safety Incidents 

– Number of Complaints 

• What is common among all of these 

measurements? 

– Require a good operational definition 

– Little judgment involved in determining the result 

– The potential for variation still exists! 

• Data entry 

• Incorrect formulas 

• Not applying the operational definition 
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Examples: Simple MSA 

• A project was undertaken to reduce start-up cycle time for a 

manufacturing process (from 12 hours to 6 hours).  The time was 

automatically calculated in a Distributive Control System (DCS).   The 

project leader manually recorded the beginning and end times for 10 

different startups and compared these to those in the system.  All 

times were found to match within 1 minute.  This completed the MSA. 

 

• A project to reduce transportation costs tracked expenses for 

company and rental cars.  A sample of 40 trips taken using company 

cars was compared to expenses reported in the accounting system.  

25% of the trips were not found in the system (people were entering 

these expenses into the wrong location).  The system was 

subsequently changed and additional data was collected to confirm 

the accuracy.  The MSA was considered complete. 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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0 1 2 3 4 5 6 7 8 9 10 

Discrete: 
Count 

Discrete: 
Ordinal 0 1 2 3 4 5 6 7 8 9 10 

“low”/“small”/“short” “high”/”large”/”tall” “medium” / “mid” 

Continuous 

infinite # of possible measurements in a continuum 

Discrete vs Continuous Data 

Discrete: 
Binary 

“bad”/“no-go”/”group #1” “good”/“go”/”group #2 

defines TWO groups - no order 

Discrete: 
Nominal or  
Categorical defines several groups - no order 

Group A Group B Group C Group D Group E Group F 
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Analysis of an Attribute MSA 

• For binary data use Assessment Agreement  

 

• For nominal data use Assessment Agreement 

and Kappa 

 

• For ordinal data: 

– Use Assessment Agreement and Kappa if you want to 

know amount of absolute agreement 

– Use Kendall’s coefficients for relative amount of 

agreement (normally the most useful) 
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Analysis Interpretation* 

Stoplight 

Color 

Assessment 

Agreement 
Kappa Kendall's Decision Action 

RED 
(not 

acceptable) 

<70% <0.7 <0.7 
Measurement 

system incapable 

Improve 

measurement system 

before proceeding 

with project. 

YELLOW 
(acceptable) 

70-90% 0.7-0.9 0.7-0.9 

Measurement 

system 

moderately 

capable 

Consider improving 

measurement system 

while proceeding with 

project. 

GREEN 
(preferred) 

>90% >0.9 >0.9 
Measurement 

system capable 

Measurement system 

adequate, proceed 

with project. 

*Guidelines only; specific situations may suggest tighter or more relaxed 

requirements than these 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Evaluating Measurement Resolution 

Example:  Process wait times often exceed 15 minutes, and we 

want to eventually get them down to 10 minutes or less. 
• What level of resolution is required for measuring wait times? 

• Which of the following have adequate resolution for measuring 

wait times?  
– Digital stopwatch (measures to nearest 0.01 sec) 

– Digital wall clock (displays HH:MM:SS time) 

– Analog wall clock (usual clock face) 

– Sundial 

10-Bucket Rule for Evaluating 
Measurement Resolution 

Does the measurement tool work on a scale that 

gives at least 10 subdivisions within the range of 

interest? 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Continuous MSA Roadmap 

OK 

OK 

OK 

OK 

“Precision”  

(Repeatability &  

Reproducibility?) 

Stability? 

Linearity? 

      Bias? 

Resolution? 

MSA evaluates the 

Performance of the 

Measurement 

System by 

evaluating each of 

these 

Use the 10-bucket Rule 

If unacceptably high 

measurement 

variation is found, 

corrective action is 

taken to reduce to 

acceptable levels 

Then 
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Use of Standards 

• Standards are run in most laboratories to maintain 

control of test methods   

• On-line instruments may also have standards data 

available 

• A look at this data will often provide information 

on stability, bias and total R&R 

• If more than one standard is available then 

linearity may also be tested from the standards 

data 

• Seriously consider if and how this will represent 

typical variation.  Issues include: 

– Samples are not blind 

– Different operators may test the standard vs. run the routine 

tests 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R 

MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Gage R&R Study Design 

• Select items from which to take measurements 

– Items should represent typical range observed from the process 

– Recommend at least 10 samples 

• Select at least two operators to take measurements 

– Preferred: use as many different operators as time will allow 

– Use only personnel that will normally make these measurements  

• Each operator measures each part at least two times 

– df = (#items) * (#operators) * (#repeats per operator - 1) at least 30 

– Restrictions lead to “nested” rather than “crossed” analyses  

• Consider “expanded” data collection structures 

– On process generating the “items” – process DOE factors 

– On process generating the “measurements” – eg, multiple 

instruments (within lab) or multiple laboratories 
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Linking Voice of Measurement 

%StudyVariation   

= 100*smsmt/stotal 

Voice of the Measurement (VOM) 

Voice of the 

Process 

 (VOP) 

Voice of the 

Customer 

(VOC) 

%Tolerance = 100* 

(6*smsmt)/Spec Range 

Cp = Spec Range/(6*stotal) 

%StudyVariation  

=  Cp * %Tolerance 
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Analysis Interpretation* 

Stoplight 

Color 

%Study 

Variation 
%Tolerance Decision Action 

RED 
(not 

acceptable) 

>30% >30% 

Measurement 

system 

incapable 

Improve measurement 

system before 

proceeding with 

project. 

YELLOW 
(acceptable) 

10-30% 10-30% 

Measurement 

system 

moderately 

capable 

Consider improving 

measurement system 

while proceeding with 

project. 

GREEN 
(preferred) 

<10% <10% 
Measurement 

system capable 

Measurement system 

adequate, proceed 

with project. 

*Guidelines only; specific situations may suggest tighter or more relaxed 

requirements than these 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Example: Two instruments in-line or on 

parallel lines 

• Design 

– Two instruments, either in series or in parallel  

– We can make measurements on both at the same time so 

that we can assume that they are seeing the same “sample” 

– Collect enough data to allow all potential sources of 

measurement variation  

• Calculations 

– Measurement variation is calculated from the differences 

between the pairs of readings taken by the two instruments 

at a given time (after subtracting out instruernt bias) 

– Process variation calculated individually from each 

instrument’s readings and then pooled between the two 

instruments. 
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Flow2 (PCE) 

% Study = 2.0% 

Flow1 (Chlorine)   

% Study = 2.6% 

Two examples from same process (with results to 

be used in later “calculated variables” example) 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Long-term vs. Short-term MSA 

• Data Requirements 

– Short-term variability dominated by measurement 

variation 

• Sampling frequency short relative to process inertia 

– Long-term variability indicative of the normal range of 

the data 

• Analysis 

– Use moving-range-based calculations 

– Alternatively, variance components analysis (requires 

specific grouping) 

 



36 

Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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How Does Error Propagate? 

From Physical Chemistry for independent variables: 

 

For the equation Y = f(x1,x2,…xn), error propagates as 

 

(dY)2 = (f/ x1)
2(dx1)

2 + ( f/ x2)
2(dx2)

2 + ...(f/ xn)2(dxn)2 

 

  or written another way  

 

(σY)2 = (f/ x1)
2(σx1)

2 + (f/ x2)
2(σx2)

2 + ...(f/ xn)2(σxn)2 

 

 

References:  

“Theory of Error”, by Yardley Beers or any Physical Chemistry Lab Text 

Chapter 9 of  “Statistics for Experimenters” by Box, Hunter and Hunter  
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Common Approaches to Propagation of 

Error (POE) 

• By calculation 

– Only feasible for simple calculations, or if you 

like doing the calculus! 

• By setting up a simulation (monte carlo) 

– Set up individual columns representing the 

measurement error in each X and perform the 

Y calculation to simulate how the error 

propagates 
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Activity: In-Line and Calculated Variable 

MSA 

• A project has been undertaken to improve 

yield of a chemical process.  Yield is 

calculated based on two flow meters using 

the following formula. 

   Yield = (Flow1/Flow2)×2.339 

• Flow1 and Flow2 are measured via on-line 

instruments each with parallel flow meters.  

The data represents samples taken at the 

same time from each instrument.  Both Flow1 

and Flow2 instruments are expected to be 

close to equal in measurement variation. 
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Activity: In-Line and Calculated Variable 

MSA Continued 

From R&R and process studies we have:  

  Average R&R StdDev Process StdDev 

Flow 1  8.85   0.0345  1.331 

Flow 2          20.7   0.0615          3.092 

Yield  0.96067                    0.0139 

 

Work in teams to determine 

1. Measurement %study variation for Flow1 and Flow2  

2. Measurement %study and % tolerance for Yield                                       

-- Determine at Flow1=8.85 and Flow2=20.7                                 

-- Note Yield Specifications: LSL = 0.85 to USL = 1.15 

3. Does this measurement system appear to be adequate? 
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1st Quartile 0.9968

Median 1.0000

3rd Quartile 1.0033

Maximum 1.0177

1.0000 1.0002

0.9999 1.0001

0.0048 0.0049

A-Squared 0.52

P-Value 0.188

Mean 1.0001

StDev 0.0049

Variance 0.0000

Skewness 0.0127857

Kurtosis -0.0498914

N 10000

Minimum 0.9834

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1.0151.0101.0051.0000.9950.9900.985

Median

Mean

1.000151.000101.000051.000000.999950.99990

95% Confidence Intervals

Summary Report for Y

From Simulation:  Yield Measurement StdDev is 0.0049 
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Answer: In-Line and Calculated Variable 

MSA 

1. Flow 1 %Study Variation = 0.0345/1.331 × 100% =  2.63% 

     Flow 2 %Study Variation = 0.0615/3.092 × 100% =  1.97% 

 

2. Yield % Study Variation and % Tolerance 

 

 

 

 At F1 = 8.85 and F2 = 20.7 

 

        

  

        = 0.0049 

 %Study Var. = 0.0049 / 0.0139 × 100% = 35.3%    

 %Tolerance = 6×0.0049 / (1.15-0.85) × 100%  

          = 0.0294/0.30 × 100% = 9.8% 

 

222

21

22

2 21
)/339.2()/339.2( FFY FFF  

22

2

22

1 21
)/()/( FFY FYFY  

22222 )0615.0())7.20/(85.8339.2()0345.0()7.20/339.2( Y

)003782.0002334.0()00119.001277.0( 
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Summary:  VOM vs. VOP vs. VOC for     

In-Line and  Calculated MSA Activity 

%Study Variation   

= 100×smsmt/stotal 

= 35% 

Voice of the Measurement (VOM) 

Voice of the Process 

 (VOP) 
Voice of the Customer 

(VOC) 

%Tolerance  

= 100×(6×smsmt)/Spec. Range 

= 10% 

CP = Spec. Range/(6×stotal) 

      = 3.5 

  %Study Variation  

=  CP × %Tolerance 

             or 

35% = (3.5) × (10%) 
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Following the MSA Roadmap 

• First, Identify Measure (and Operational Definition) 

• If a “simple measure”, do Simple MSA 

• If a discrete (attribute) measure, do Attribute MSA  

• If a continuous measure 

• If calculated from several continuous variables, do MSA on each 

component and then do Calculated Variable MSA  

• Check that Resolution is ok (“ten bucket rule”) 

• If lab data sufficient, do Lab Standard MSA 

• If crossed, nested or expanded Gage R&R feasible, do Gage R&R MSA 

• If parallel or in-line instruments, do Parallel (In-Line) MSA 

• As last resort, do Long-Term vs. Short-Term MSA 

• Finally, Assess and Improve MS (if needed) and document 
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Improving the Measurement System 

Source: AIAG QS9000 MSA Manual  
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Improving Measurement Variation By 

Averaging 

• One option for improving the measurement variation 

that is always available is to report the average of 

multiple results.  This can be considered when the 

measurement is already performing near its best or 

improvement of the measurement is cost prohibitive.  

• By taking 2 measurements each time (1 operator) and 

averaging 

 

 

• By taking those same 2 measurements using 2 

operators 

 

2
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
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MSA Roadmap 
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MSA Roadmap 

Identify 

Measure Simple 

MSA 

Calculated 

Variable 

MSA 

Attribute 

MSA 

Check 

Resolution Lab 

Standard 

MSA 

Gage 

R&R 

MSA 

Parallel 

(In-

Line) 

MSA 

Long-

term vs. 

Short-

term 

MSA 

Assess and Improve MS 
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Year DOE Theory Area Software Course Audience 

1920s Agriculture split plot 
experiments (Fisher & 
Yates) 

1930s 

1940s Plackett-Burman designs 

1950s Response surface methods 
(Box et al.) 

R&D Hand calculations 
Univac 

1960s Mixture designs (Scheffe) R&D 
MFG 

SOE (1964) Internal offering 

1970s Design optimality and 
computer-aided designs 
Conjoint analysis 

Univac programs 
developed 
internally 

SOE 
SOFD added 

Internal & 
External offering 
(Began selling 
course externally 
in 1974) 

1980s Robust parameter design R&D, MFG 
Agriculture 

RS/Discover (VAX), 
Minitab® (VAX), 
ECHIP (PC)  

Last major 
content update 

1990s Industrial split plot designs R&D, MFG, 
Agriculture 
Tech. 
Sales/Marketing 

Design Expert (PC), 
JMP® (PC), 
Minitab® (PC)  

Software updates Internal & 
DuPont 
Customers 

2000s Computer experiments R&D, MFG, 
Agriculture, 
Tech. 
Sales/Marketing 

Minitab®, JMP®, 
SAS® 

SOE & SOEFD 
course 
DOE  

Strategy of Experimentation (SOE) History 

Milestones In Designed Experiments 
From “Design Of Experiments Makes A Comeback”,  
Chemical & Engineering News, April 1, 2013 Issue - Vol. 91 Issue 13  

1. Ronald A. Fisher (1890 – 1962) 
2. George E. P. Box (1919 – 2013) 
3. “In the 1970s, DuPont’s Quality Management & Technology Center 

trains DuPont employees on DOE and offers the training to other 
companies. The company continues the service into the 1990s.” 

4. FDA Quality by Design (2011)  



Evolution of the Experimental Environment 
 

Full Factorials as Building Blocks for Screening and Response Surface Experiments 

 

X3 

X2 
X1 

X3 

X2 
X1 

X3 

X2 
X1 

Full Factorial 
Experiments 

Response Surface 
Experiments 

Screening 
Experiments 

Over 40,000 students internally and 

externally trained in DuPont’s  

Strategy of Experimentation (SOE)! 
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1990 FTC Shewall Award-Winning Papers 



54 



55 



56 

Designing a Circuit 

Current Y
V

R fL

( )

( )



2 2 2

where V = Voltage 

  R = Resistance 

   f = frequency 

  L = Inductance  

Example adapted from Taguchi, Genichi. “The Development of Quality 

Engineering” in The American Supplier Institute Journal 1, No. 1 (Fall 1988). 
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Circuit Design Goal 

 

                       To: Choose “nominal” values for the design factors 

   (Resistance and Inductance) 

 

In a Way That: Keeps the property (Current) as close as 

                          possible to the desired aim of 10 Amps and 

 

  Minimizes transmitted variability due to variation  

                          in environmental factors (Voltage and Frequency) 

  and deviations (tolerances) in the design factors 

  (Resistance and Inductance) from the nominal  

  settings. 

   

          So That: The circuit design is functional and robust. 
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Circuit Design Factors and Response 

                                                          Low       Middle       High 

Factors     Name                   (1)             (0)            (+)         Units             Tolerances 

 

      V        Voltage                 90 100 110    V       10 (Full Range) 

 

      R        Resistance 0.5 5.0  9.5  Ohms        0.5 

 

      f         Frequency               50  55   60     Hz                5 (Full Range)         

 

      L        Inductance 0.01 0.02 0.03    H                  0.002  

 

 

Property     Name                  Aim            Units  Spec Range    

 

      Y         Current   10            Amps           2 










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R = 9.5 and L = 0.010 is Taguchi's preferred design. 

Taguchi used signal-to-noise (S/N) ratio 

but we will use mean squared error (MSE).  

R L NMin NMax Avg StDev MSE 

0.5 0.010 19.43 43.77 31.60 17.21 614.55 

0.5 0.020 10.77 19.45 15.11 6.14 44.97 

0.5 0.030 7.43 12.51 9.97 3.59 6.43 

5.0 0.010 12.64 21.34 16.99 6.15 67.79 

5.0 0.020 9.04 15.22 12.13 4.37 14.09 

5.0 0.030 6.79 11.13 8.96 3.07 5.80 

9.5 0.010 8.20 11.77 9.99 2.53 3.19 

9.5 0.020 6.93 10.35 8.64 2.42 4.78 

9.5 0.030 5.74 8.74 7.24 2.12 9.85 

Data for Taguchi’s Analysis 
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Taguchi’s Analysis and Solution 

 

 

 

 

 

Inner Array: Used 3x3 full factorial design for (R, L). 

• R = 0.5, 5.0, 9.5 

• L = 0.010, 0,020, 0.030 

Outer Array: Used “compounded noise” approach, noting 

(from the equation) where the extreme values for the 

response (Current) occur in tolerance space: 

• Minimum (NMin) at V = 90, f = 60, R+0,5 L+0.002 

• Maximum (NMax) at V = 110, f = 50, R-0.5, L-0.00 

Conclusion: Based on summary statistics (on previous chart), 

R = 9.5 and L = 0.010 is the preferred design. 

 

Note: Other (R, L) combinations in the design space (besides 

the 9 in the inner array) were not considered. 

 

Our approach will look at the whole (R, L) design space, 

and a full 3x3x3x3 = 81 outer array for the “noise space”. 
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YAvg

Contour Plot of YAvg vs L, R

YAvg is the 

average of all 81 

outer-array values. 
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YVar

Contour Plot of YVar vs L, R

YVar is the 

variance of the 81 

outer-array values. 
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R
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MSE

Contour Plot of MSE vs L, R

Mean Squared 

Error (MSE) is 

based on the 81 

outer-array values. 
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Circuit Design Experiment 

 Generate data using an experimental design:      

4-factor face-centered central composite design 

Y
V

R fL

erimental error



 
2 2 2( )

exp

 (  1) 

    

  Fit a polynomial model to the data. 

 

  Examine the regression summaries and contour plots. 

How this was done for this example 
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Contour Plot of YAvg vs L, R

“General contour 

plot” of YAvg 

from grid of (R,L) 

values  
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Contour Plot of YVar vs L, R

“General contour 

plots” of YVar 

from grid of (R,L) 

values  
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Contour Plot of Y_MSE vs L, R

“General contour plot” of 

mean squared error (MSE) 

plotted from a grid of (R,L) 

values.  But YAim and YVar 

are quadratic models and can 

be “co-optimized”. 
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Robust Design Elements and Options 

• Transfer function (including “Control” and “Noise” factors)  

– True equation 

– Full quadratic model (from response surface DOE)  

– Reduced quadratic model 

• Noise generation 

– Propagation of error (POE), using +/- 3 StDev tolerances 

– “Outer-array-like” calculations (span tolerance range) 

– Monte Carlo via (normal) distribution 

• Optimization criterion 

– Minimize Variance subject to On-Aim Constraint 

– Minimize Mean Square Error (MSE) 

– Maximize Cpk/Ppk or minimize “Out of Spec” (so 

tolerances on Y needed) 
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Noise by Propagation of Error 

V Y
Y

X X

Y

X X

Y

X X
k k

( ) ....








 









 











2
2

2
2

2
2

1 1 2 2

d

d

d

d

d

d
  

The noise or transmitted variance in Y, V(Y) from  

the factors (Xs) can be estimated using the propagation  

of error (POE) relationship. 
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Propagation of Error 
 First-order derivatives from a second-order (quadratic) 

response surface are themselves first-order (linear) 

equations! (See below for three-factor example of this.) 

 Thus the V(Y) equation on the previous chart is in fact a 

second-order (quadratic) response surface itself! 
 

3332231133

3
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2

3132121111
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11132233113211222110
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Design-Expert® Software

(Beta)

Factor Coding: Actual

YCurrent

4.70 34.9

X1 = B: R

X2 = D: L

Actual Factors

A: V = 100.

C: f = 55.0

&#42; Intervals adjusted for

  variation in the factors
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Design-Expert® Software

(Beta)

Factor Coding: Actual

POE(YCurrent)

2.66 17.6

X1 = B: R

X2 = D: L

Actual Factors

A: V = 100.

C: f = 55.0
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POE for quadratic models have been available in        

Stat-Ease’s Design Expert since the mid-1990’s 



At right are monte 

carlo results using 

the quadratic 

response surface 

model at optimum        

(R=6.92, L=0.019) 

At left are the results 

from the true model 

(R=9.40, L=0.010) 

“Parameter Optimization” of a Ppk-like metric is 

available for any model in Minitab’s Companion 
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       DOE Big Picture 

     Y    =     f(Xs)       +       e 

Output equals Function of Inputs plus  Variation 

Continuous  
vs.  

Discrete 

“As Is” vs. 
Transformed vs. 
“Link Function” 

Theoretical 
vs. 

Empirical 

Simple 
vs. 

Complex 

Continuous  
vs.  

Discrete 

Screening vs. 
Optimization 

Blocking 
and 

Randomization 

Overt (Pure) 
and Hidden 
Replication 

vs. 

Number of 
rows of data 

(n) 

Number of 
parameters to 
estimate (p) 

Number of 
additional treatment 

combinations for 
checking lack  

of fit (l) 

Amount of 
pure replication 

(r) 

Historical Data Mining (HDM) vs Designed Experiment (DOE) 

Many  
vs. Few 

Bias 
Error 

Random 
Error 

= + 

Output 

+ 

Function Inputs Variation 

Equation 

Words 

Considerations 

Degrees of 

Freedom 

Question! 



A final word from Jack Youden (from 50 years ago) 

AOAC = Association of Official Analytical Chemists 



There is no “I” in “Youden”, 

but there is “You” 

Thank you for listening! 
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JMP can also perform similar analyses 

(per note from Brad Jones below) 
• The interface to the profiler allows for simulating from the 

prediction model allowing noise factors to vary according to a 

specified distribution. The user can set the number of 

simulations and the output is the defect rate. The interface 

also supports running a designed simulation experiment that 

alters the nominal settings of each factor to find the settings 

that minimize the predicted defect rate. 

• Alternatively, and more simply, you can output the prediction 

equation as a formula and use the profiler in the graphics 

menu while indicating which factors are noise factors in the 

launch dialog. The optimization then finds the settings of the 

control factors that simultaneously minimize the magnitudes 

of the first derivative of the prediction equation with respect to 

the noise factors and match the target response. Of course 

this is a multiple response optimization, so we use a (user 

customizable) utility function and maximize that. 

• . 



Outline for talk (as appeared in program) 

Experiences, approaches, and examples of Measurement Systems 

Analysis (MSA) and Design of Experiments (DOE) will be shared, 

based on decades of application in the chemical and process 

industries.   

• First, a roadmap for MSA will be presented that has proved useful 

in guiding MSA studies for six sigma projects. 

• Then the Strategy of Experimentation that has been taught and 

used successfully in DuPont for over 50 years will be reviewed 

• The importance of including both “design” (or “control”) and 

“environmental” (or “noise”) factors in these studies to achieve both 

“functional” and “robust” products will be illustrated.   

• The role of custom (algorithmic or optimal) designs and Definite 

Screening Designs (the “new tool on the block”) in this          

strategy will be discussed.  

• Finally, some comments on “Big Data” and the combined         

power of both “Historical Data Mining” and DOE will be shared. 

 



Outline for talk (condensed version) 

Experiences, approaches, and examples of Measurement Systems 

Analysis (MSA) and Design of Experiments (DOE) will be shared, 

based on decades of application in the chemical and process 

industries.   

• A roadmap for MSA will be presented that has proved useful in 

guiding MSA studies for six sigma projects in DuPont. 

• Then these DOE topics will be briefly covered: 

– DuPont’s 50+ years of Strategy of Experimentation 

– An example with both “design” (or “control”) and “environmental” (or 

“noise”) factors and how to achieve both “functional” and “robust” 

products.   

– Examples of custom (algorithmic or optimal) designs 

– Definite Screening Designs (DSDs, the “new tool on the block”)             

and their “not so definitive” Analysis 

– “Big Data” and the combined power of both                                             

“Historical Data Mining” and DOE. 
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A final word from Jack Youden (from 50 years ago) 




