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Background & Disclaimer

What | mean by model uncertainty

Recent project to study model uncertainty in NIST work (and
more broadly)

Nothing | consider new or novel

m Established procedures that | prefer when faced with model
uncertainty

Reflects my own preference for including model uncertainty

From the Bayesian point of view

Focused on measurement uncertainty



Options for Model Uncertainty

Model Selection
Model Averaging
Non-parametric

Enveloping

Anything else?



Continuous Model Expansion

m Bridging model that continuously links each model in a
collection
m As opposed to model averaging

m For improper priors, the posterior model probabilities (weights)
are not well defined
m Computationally daunting with large collections



Students-t Distribution

m Bridges the Cauchy and Gaussian distributions
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Thermistor Calibration
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Polynomial Models

K
y=a+) BiPu(x)+e
k=1

m Pk(x) - orthogonal polynomial of order k
m [ - coefficients to be estimated

m K controls the bias-variance trade-off



Simulated Polynomials
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Alternative to Choosing K

K
y:a+ZBkPk(x)+e
k=1

Bk ~ Gaussian(0,02)

Set large K
“Shrink” coefficients toward zero
Ridge regression

op controls bias-variance trade-off

Uncertainty in o) may be interpreted as model uncertainty



Simulated Polynomials

m K=4anda=0

0,=0.1 op,=1
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Calibration Curve Residuals

m Original: K = 3 selected from K < 6
m Shrinkage: K =6

Original Shrinkage
o °
0.01 1 °
— ° ° [ ]
g e . .
S 000 o s
® ° ° *
o ° °
[ ]
[ 3
-0.01 . hd
[ ]
20 25 30 35 40 20 25 30 35 40

°C

11/29



Calibration Curves up Close
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= The lines depict 95% prediction intervals
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Calibration Example Summary

m Choice of polynomial degree
m Original analysis selected the “best” degree

m Shrinkage
= Fit one model instead of six, but with an extra shrinkage
parameter
m Uncertainty in the shrinkage parameter may be interpreted as
model uncertainty



Length vs. Volume for CT Tumor Measurements

Clinical goal is detecting tumor growth

m Dimensional measurements using CT images may face
difficulties

= Soft edges
m lrregular shapes

Mass can serve as a gold standard in phantom studies
But mass is unavailable in clinical settings

How good is CT measured volume as a surrogate?

How good is RECIST (length) as a surrogate?



Tumor Phantom Experiment
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Diaper Measurem

Mass vs. Volume Mass vs. RECIST
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Two Models

= Homogeneous diapers

log{mass}; = 8o + Bilog{volume}; + ¢€;

m Heterogeneous diapers

log{mass}; = Bo, + B1,ilog{volume} ; + ¢;

m Similar for RECIST



Multi-level Model (Bridging Model)

log{mass}; = fo,i + B ilog{volume}; + ¢€;
Bo,i ~ Gaussian(ﬁo,ag)

B1; ~ Gaussian(f, U%)

m Interpret uncertainty in 8y, £1, 0o, and o1 as model
uncertainty

m Error in volume measurement
m Similar for RECIST



Mass vs. Volume Mass vs. RECIST
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Added Benefit

m Prediction of results from new experiment

m The grey regions depict 95% pointwise prediction intervals
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Tumor Phantom Example Summary

m Two similar data sets

m Separate lines for one data set

m Single line for the other

m Random coefficients model forms a bridge
m “Pooling” information across diapers
[

Interpret uncertainty in the amount of pooling as model
uncertainty



Standard Reference Materials (SRMs)
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Heterogeneity vs. Homogeneity

m Homogeneous model

Yij = B €

m Heterogeneous model

Yij = pi +€jj



Bridging Model

Yij = pit€j
Wi ~ Gaussian(u,aﬁ)

m In small samples the homogeneous model may not recieve
much weight



Spike and Slab Prior

w(oule) =1 " e
: (1—p)f(o,) otherwise

p ~ Uniform(0,1)

m Equivalent to averaging the homogeneity and bridging models
m Computation

= Full Bayesian - MCMC
m Approximate — BIC or Stacking



SRM 2718a Green Petroleum Coke
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Na
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Density
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SRM Example Summary

m Chemists strive to achieve homogeneous units

m Bridging model may down weight homogeneity model in small
samples

m Emphasize it with spike and slab prior

= Model uncertainty captured in spike weight and o,



