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Background & Disclaimer

What I mean by model uncertainty

Recent project to study model uncertainty in NIST work (and
more broadly)

Nothing I consider new or novel

Established procedures that I prefer when faced with model
uncertainty

Reflects my own preference for including model uncertainty

From the Bayesian point of view

Focused on measurement uncertainty

2/29



Options for Model Uncertainty

Model Selection

Model Averaging

Non-parametric

Enveloping

Anything else?
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Continuous Model Expansion

Bridging model that continuously links each model in a
collection

As opposed to model averaging

For improper priors, the posterior model probabilities (weights)
are not well defined
Computationally daunting with large collections
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Students-t Distribution

Bridges the Cauchy and Gaussian distributions

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0

x

D
en

si
ty

Distribution Cauchy Gaussian t3

5/29



Thermistor Calibration
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Polynomial Models

y = α +
K∑

k=1

βkPk(x) + ε

Pk(x) - orthogonal polynomial of order k

βk - coefficients to be estimated

K controls the bias-variance trade-off
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Simulated Polynomials
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Alternative to Choosing K

y = α +
K∑

k=1

βkPk(x) + ε

βk ∼ Gaussian(0, σ2b)

Set large K

“Shrink” coefficients toward zero

Ridge regression

σb controls bias-variance trade-off

Uncertainty in σb may be interpreted as model uncertainty
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Simulated Polynomials

K = 4 and α = 0

σb = 5 σb = 10

σb = 0.1 σb = 1
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Calibration Curve Residuals

Original: K = 3 selected from K ≤ 6

Shrinkage: K = 6

Original Shrinkage
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Calibration Curves up Close
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The lines depict 95% prediction intervals
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Calibration Example Summary

Choice of polynomial degree

Original analysis selected the “best” degree

Shrinkage

Fit one model instead of six, but with an extra shrinkage
parameter
Uncertainty in the shrinkage parameter may be interpreted as
model uncertainty
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Length vs. Volume for CT Tumor Measurements

Clinical goal is detecting tumor growth

Dimensional measurements using CT images may face
difficulties

Soft edges
Irregular shapes

Mass can serve as a gold standard in phantom studies

But mass is unavailable in clinical settings

How good is CT measured volume as a surrogate?

How good is RECIST (length) as a surrogate?
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Tumor Phantom Experiment
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Diaper Measurements
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Two Models

Homogeneous diapers

log{mass}ij = β0 + β1log{volume}ij + εij

Heterogeneous diapers

log{mass}ij = β0,i + β1,i log{volume}ij + εij

Similar for RECIST
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Multi-level Model (Bridging Model)

log{mass}ij = β0,i + β1,i log{volume}ij + εij

β0,i ∼ Gaussian(β0, σ
2
0)

β1,i ∼ Gaussian(β1, σ
2
1)

Interpret uncertainty in β0, β1, σ0, and σ1 as model
uncertainty

Error in volume measurement

Similar for RECIST
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Results
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Added Benefit

Prediction of results from new experiment

The grey regions depict 95% pointwise prediction intervals
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Tumor Phantom Example Summary

Two similar data sets

Separate lines for one data set

Single line for the other

Random coefficients model forms a bridge

“Pooling” information across diapers

Interpret uncertainty in the amount of pooling as model
uncertainty
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Standard Reference Materials (SRMs)
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Heterogeneity vs. Homogeneity

Homogeneous model

yij = µ+ εij

Heterogeneous model

yij = µi + εij
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Bridging Model

yij = µi + εij

µi ∼ Gaussian(µ, σ2µ)

In small samples the homogeneous model may not recieve
much weight
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Spike and Slab Prior

π(σµ|p) =

{
p if σµ = 0

(1− p)f (σµ) otherwise

p ∼ Uniform(0, 1)

Equivalent to averaging the homogeneity and bridging models

Computation

Full Bayesian – MCMC
Approximate – BIC or Stacking
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SRM 2718a Green Petroleum Coke
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Results
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SRM Example Summary

Chemists strive to achieve homogeneous units

Bridging model may down weight homogeneity model in small
samples

Emphasize it with spike and slab prior

Model uncertainty captured in spike weight and σµ
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